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Abstract

We investigated motor skill learning using a path tracking task, where human subjects had to track various curved paths at a
constant speed while maintaining the cursor within the path width. Subjects’ accuracy increased with practice, even when track-
ing novel untrained paths. Using a “searchlight” paradigm, where only a short segment of the path ahead of the cursor was
shown, we found that subjects with a higher tracking skill differed from the novice subjects in two respects. First, they had lower
movement variability, in agreement with previous findings. Second, they took a longer section of the future path into account
when performing the task, i.e., had a longer planning horizon. We estimate that between one-third and one-half of the perform-
ance increase in the expert group was due to the longer planning horizon. An optimal control model with a fixed horizon (reced-
ing horizon control) that increases with tracking skill quantitatively captured the subjects’ movement behavior. These findings
demonstrate that human subjects not only increase their motor acuity but also their planning horizon when acquiring a motor
skill.

NEW & NOTEWORTHY We show that when learning a motor skill humans are using information about the environment from an
increasingly longer amount of the movement path ahead to improve performance. Crucial features of the behavioral perform-
ance can be captured by modeling the behavioral data with a receding horizon optimal control model.

motor control; motor learning; optimal control; receding horizon control; skill learning

INTRODUCTION

The human motor system can acquire a remarkable array
of motor skills. Informally, a person is said to be “skilled” if he
or she can perform faster and at the same time more accurate
movements than other, unskilled, individuals. What we do
not know, however, is what learning processes and compo-
nents underlie our ability to move better and faster. One com-
ponent may be relatively “cognitive,” involving the faster and
more appropriate selection and planning of upcoming actions
(1, 2). Another component may be related to motor execution:
the ability to produce and finely control difficult combina-
tions of muscle activations, also called “motor acuity” (3, 4).

Depending on the structure of the task, changes in visuomo-
tor processing or feedback control may also contribute to skill
development. Motor adaptation extensively studied using
visuomotor and force perturbations (5) may play a certain role
in stabilizing performance, but it cannot by itself lead to
improvements in the speed-accuracy trade-off (6).

A task commonly used in the experiments on motor skill
learning is sequential finger tapping, where subjects are
asked to repeat a certain tapping sequence as fast and as
accurately as possible (7–10). Improvement in such a task
can continue over days, but previous papers have focused
mostly on the learning that is specific to the trained
sequence(s) (7).
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Many real-world tasks, however, do not involve the pro-
duction of a fixed sequence of motor commands but the flex-
ible planning and execution of movements. Such flexibility
is often well described by optimal feedback control models
(11–13) where the skilled actor appears to compute “on the
fly” the most appropriate motor command for the task at
hand. This requires demanding computations (13), and the
humanmotor system likely has found heuristics to deal with
this complexity. One way to reduce complexity of the control
problem is to not optimize the whole sequence of motor
commands that will achieve the ultimate goal but to only
optimize the current motor command for a short distance
into the future. This idea is called receding horizon control,
also known as model predictive control (14). Under this con-
trol regime, the system computes a feedback control policy
that is optimal for a finite planning horizon. The control pol-
icy is then continuously updated as the movement goes on
and the planning horizon is being shifted forward. This
allows for adaptability, e.g., it can flexibly react to perturba-
tions or unexpected challenges, as sensory information
becomes available. Recent studies provided indirect evi-
dence that favor the optimization of short time-periods of a
motor command (15). The notion of planning horizon also
arises in reinforcement learning, e.g., in the context of the
so-called successor representation (16).

Motivated by these ideas, we propose that some of the skill
of a downhill skier or a race-car driver may lie not only in the
increased ability to execute difficult motor commands (e.g.,
due to increased motor acuity) but also in the ability to plan
further ahead and to optimize the movements for a longer
time period into the future. In addition, we propose that the
time span that subjects plan ahead increases with experi-
ence, leading to an increasing performance with training.

To test this idea, we designed an experimental condition
that would allow us to measure the planning horizon that
skilled actors are using when executing long sequence of
movements that need to be planned “on the fly,” i.e., where
the actual sequence of movements cannot be memorized.
For this, we developed a path tracking task, where subjects
had to maintain their cursor within a path that was moving
toward them at a fixed speed. A similar task has been previ-
ously used in motor control research (17), using a mechani-
cal apparatus with paths drawn on a paper roll that was
moving at a fixed speed. It has been shown that subjects are
able to increase their accuracy with training, but the differ-
ent computational strategies between expert subjects and
naive performers remain unclear. In our study, we use
“searchlight” trials in which subjects see various lengths of
the approaching path ahead of their cursor to probe sub-
jects’ forward planning and compare experts and novices in
this respect.

MATERIALS AND METHODS

Subjects

Sixty-two experimentally naive subjects took part in this
experiment (33 males and 29 females, age range: 20–52 yr
old). Subjects gave written informed consent and were paid
10 e/h. The experimental procedures received ethics ap-
proval from the University of Freiburg.

Setup

Subjects sat at a desk looking at a computer monitor
(Samsung Syncmaster 226BW) located �80 cm away. A cur-
sor displayed on the screen [Matlab and Psychophysics
Toolbox Version 3 (18)] was under position control by move-
ments of a computer mouse. The mouse could be moved on
the desk in all directions but only the horizontal (left and
right) component contributed to the cursor movement: the
vertical position of the cursor was fixed at 5.7 mm above the
base of the screen.

Task

To begin each trial subjects had to press the space bar.
This displayed the cursor (R = 2.9 mm, 1.1 cm from the bot-
tom of the screen) and the path (width = 2.83 cm) that
extended from the top to bottom of the screen (30 cm). The
path continuously moved downward on the screen at a verti-
cal speed of 34.1 cm/s. The initially visible path was a
straight line centered in the middle of the screen with the
cursor positioned in the middle of the path. Once this initial
section moved through the screen, the path then followed a
random curvature (Fig. 1A). Subjects were instructed to keep
the cursor between the path borders at all times moving only
in the horizontal plane and were told to be as accurate as
possible. The cursor and path were displayed in white if the
cursor was within the path and both turned red when it was
outside the path, always on a black background.

The cursor position was sampled at 60 Hz, and the track-
ing accuracy was defined for each trial as the percentage of
time steps when the cursor was inside the path. Running ac-
curacy values were continuously displayed in the top left
corner of the screen and final accuracies were displayed
between the trials.

This experiment is based on a previous version where sub-
jects were asked to track static randomly curved paths in two
dimensions as quickly as possible without touching the sides
(unpublished data and Ref. 19). We later found that the one-
dimensional paradigm presented here was better suited to
study the planning horizon as the speed was fixed.

Paradigm

Subjects were randomly assigned into two groups: expert
(n = 32) and naive (n = 30). The paradigm included a training
(expert group only) and a testing (all subjects) phase.
Subjects in the expert group trained over 5 consecutive days,
each day completing 30min of path tracking [10 of 3-min tri-
als with short breaks in-between, searchlight length (s)
100%]. If the performance improved from one trial to the
next, subjects saw a message saying “Congratulations! You
got better! Keep it up!;” otherwise, the message “You were
worse this time! Try to beat your score!” was shown. The
training paths were randomly generated on the fly. Experts
performed the testing set of trials after a short break follow-
ing training on the final (5th) day. Naive subjects performed
only the testing set of trials.

The testing phase lasted 30 min (30 of 1-min trials with
breaks in-between) using 30 different pregenerated paths
that were the same for all subjects. The testing phase in this
experiment contained 3 normal trials (s = 100%) and 27
searchlight trials (s = 10–90%) where some upper part of the
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path was not visible. Three blocks of 10 trials with the search-
light length ranging from s = 10% to s = 100% (in steps of
10%) were presented, with the order shuffled in each block;
the same fixed pseudorandom sequence was used for all
subjects.

Path Generation

Paths were generated before each trial start during train-
ing and a pregenerated fixed set was produced in the same
way for testing. Each path was initialized to start at the bot-
tom middle of the screen and the initial 30 cm of each path
were following a straight vertical line. Subsequent points of
the path midline had a fixed y-step of 40 pixels (1.1 cm) and
random independent and identically distributed x-steps
drawn from a uniform distribution from 1 to 80 pixels (2.7
mm to 2.2 cm). Any step that would cause the path to go
beyond the right or left screen edges was recalculated. The
midline was then smoothed with a Savitzky-Golay filter (12th
order, window size of 41) and used to display path bounda-
ries throughout the trial. All of the above parameters were
determined in pilot experiments to create paths which were
very hard but not impossible to complete after training.

Statistical Analysis

In all cases, we used nonparametric rank-based statistical
tests to avoid relying on the normality assumption. In partic-
ular, we used Spearman’s correlation coefficient instead of
the Pearson’s coefficient, Wilcoxon signed-rank test instead
of paired two-sample t test, and Wilcoxon-Mann-Whitney
rank sum test instead of unpaired two-sample t test.

We initially recorded n = 10 subjects in each group and
observed a statistically significant (P < 0.05) effect that we
are reporting here: positive correlation between the asymp-
tote performance and the horizon length, as estimated via
the changepoint and exponential models. We then recorded
another n = 20/22 (naive/expert) subjects per group to con-
firm this finding. This internal replication confirmed the
effect (P < 0.05). The final analysis reported in this study
was based on all n = 62 subjects together. A preliminary ver-
sion of the analysis for the initial n = 10/10 subjects can be

found in our preprint (19), but note that it used a different
way to estimate planning horizon compared to the proce-
dure presented here, and so the values are not directly
comparable.

Changepoint and Exponential Model

We used two alternative models to describe the relation-
ship between the searchlight length and the accuracy: a lin-
ear changepoint model and an exponential model. We used
two different models to increase the robustness of our analy-
sis and bothmodels support our conclusions.

The changepoint model is defined by

y ¼ cs þ o if s � hcp
chcp þ o if s > hcp

�

where y is the subject’s performance, s is the searchlight
length, and c, o, and hcp are the subject-specific parameters
of the model which define the baseline performance at
searchlight 0% (o), the amount of increase of performance
with increasing searchlight (c) and the planning horizon
(hcp) after which the performance does not increase any
further.

The exponential model is defined by

y ¼ w� expð�qs þ dÞ
where the subject-specific parameters (w, d, and r) specify
the performance at searchlight 0% (w – exp[d]), the asymp-
tote for large searchlights (w), and the speed of performance
increase (r).

This function monotonically increases but it never pla-
teaus. The speed of the increase depends on the parameter r
with larger values meaning faster approaching the asymp-
tote. We used the following quantity as a proxy for the “effec-
tive” planning horizon: 10 þ log(5)/r. It can be understood
as the searchlight length that leads to performance being
five times closer to the asymptote than at s = 10%. The log(5)
factor was chosen to yield horizon values of roughly the
same scale as with the changepointmodel above.

Both models (changepoint and exponential) were fit to the
raw performance data of each subject, i.e., to the 30 data
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Figure 1. Experimental paradigm. A: subjects had to track a curved path that was dropping down from top to bottom of the screen with a fixed speed of
34 cm/s by moving the cursor horizontally. B: expert subjects’ performance over the 5 days of training. Bold line shows the group average, and thin lines
show individual subjects (each point is a mean over 3 trials with the same searchlight length, 100%). C: expert subjects’ performance over the 5 days of
training with the performance on the first day subtracted.
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points, 3 for each of the 10 searchlight length values. The
exponential fit (see Eq. 2) was done with the Matlab’s nlin-
fit function, implementing Levenberg-Marquardt nonlin-
ear least squares algorithm. The changepoint fit (see Eq. 1)
was done with a custom script that worked as follows. It
tried all values of hcp on a grid that included s = 10% and
then went from s = 20% to s = 100% in 100 regular steps.
For each value of hcp, the other two parameters can be
found via linear regression after replacing all s > hcp values
with hcp. We then chose hcp that led to the smallest
squared error.

Trajectory Analysis

To shed light on the learning process we analyzed addi-
tional parameters of the subjects’movement trajectories.

First, we computed the time lag between the subjects’
movement trajectories and the midline of the paths (Fig. 3, A
and B). To compute the lags, we interpolated both cursor tra-
jectories and path midlines 10-fold (to increase the resolu-
tion of our lag estimates) and concatenated all three trials
from the same subject and searchlight length. We computed
the Pearson correlation coefficient between the cursor trajec-
tory and path midline for time shifts from �300 to 300 ms
and defined the time lag as the time shift maximizing the
correlation. We then used the obtained lags to compute
mean-squared-error between the lagged path midline and
the subject’s trajectory for each subject and searchlight
length (Fig. 3, C and D).

Second, we extracted the cursor trajectories in all sections
across all paths that shared a similar curved shape to explore
the differences in cursor position at the apex of the curve
(Fig. 4). The segments were selected automatically by sliding
a window of length 18 cm across the path. We included all
segments that were lying entirely to one side (left or right) of
the point in the middle of the sliding window (“C-shaped”
segments), with the upper part and the lower part both going
at least 4.5 cm away in the lateral direction (see Fig. 4). Our
results were not sensitive to modifying the exact inclusion
criteria.

To draw the 75% coverage areas of the path inflection
points in each group (Fig. 4), we first performed a kernel den-
sity estimate of these points using the Matlab function
kde2d, which implements an adaptive algorithm suggested
in Ref. 20. After obtaining the two-dimensional probability
density function p(x), we found the largest h such that $p(x)
dx > 0.75 over the area where p(x) > h. We then used
Matlab’s contour function to draw contour lines of height h
in the p(x) function.

Receding Horizon Model

Wemodeled subjects’ behavior by a stochastic receding ho-
rizon model in discrete time t. In receding horizon control
[RHC (14)] motor commands ut are computed to minimize a
cost function Lt over a finite time horizon of length h:

minimize Lt xtf g; utf gð Þ ð1Þ

subject to Lt ¼
Xh
k¼1

ltþ k

xtþ 1 ¼ f ðxt; utÞ
where f defines the dynamics of the controlled system.
Equation 1 is equivalent to an optimal control problem over
the fixed future interval [t þ 1, t þ h]. Solving (Eq. 1) yields a

sequence of optimal motor commands uopt
0 ;uopt

1 ; . . . ; uopt
h�1

n o
.

The control applied at time t is the first element of this
sequence, i.e., ut ¼ uopt

0 . Then, the new state of the system
xt þ 1 is measured (or estimated) and the above optimiza-
tion procedure is repeated, this time over the future inter-
val [t þ 2, t þ 1 þ h], starting from the state xt þ 1.

Applying RHC to our experimental task, the dynamics of
the cursor movement was modeled by a linear first-order dif-
ference equation:

xt þ 1 ¼ xt þ ut–s þ gt;gt 2 N 0;r2
� �

ð2Þ
where t is the time step, xt the cursor position at time t, ut is
the motor command applied at time t, and s the motor delay.
The gt is the motor noise that was modeled as additive
Gaussian white noise with zero mean and variance r2. We
assumed that the controller minimizes the following cost
function

Lt ¼
Xh

k¼sþ 1

�log qtþ kð Þ þ kjut�sþ k�1j2
h i

ð3Þ

where Lt is the expected cost at time t, qt þ k is the probabil-
ity of the cursor being inside the path at time t þ k, h is the
length of the horizon in time, and k is the weight of the
motor command penalty. At every time step t, Lt is mini-
mized to compute ut. The cost function in (Eq. 3) reflects a
trade-off between accuracy (first term, i.e., log[qt þ k]) and
effort (second term) whereas their relative importance is
controlled by k. Cost functions with a similar accuracy-effort
trade-off have been used previously to successfully model
humanmotor behavior (11, 13, 21).

We assumed that subjects have acquired a forward model
of the control problem including the variance of the motor
noise r2. We also assumed that subjects have an accurate
estimate of the position of the cursor at time t, i.e., xt is
known. Under these assumptions the probability distribu-
tion of the cursor position at future times t þ k can be com-
puted by:

pðxtþ kjxt; ut�s; ut�sþ 1; . . . ; ut�sþ k�1f gg ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
2pkr2

p e
�

x̂tþ kð Þ2
2kr2

ð4Þ
with

x̂tþ i ¼ xt þ
Xi

l¼1

ut�sþ l�1 ð5Þ

The probability of the cursor being inside the path is then
given by

qtþ k ¼
ðmtþ k þ

w

2

mtþ k�
w

2

1ffiffiffiffiffiffiffiffiffiffiffiffiffi
2pkr2

p e
�

x̂tþ k � zð Þ2
2kr2 dz ð6Þ
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where mt is the position of the midline of the path at time t
and w the width of the path. The receding horizon model
assumes thatmotor commands ut are computed byminimiz-
ing the cost Lt in each time step t for a fixed and known set of
model parameters (h, k, s, and r2). We simplify the optimiza-
tion problem by approximating qt þ k by

qtþ k � w
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

2pkr2
p e

�
x̂tþ k � mtþ kð Þ2

2kr2 ð7Þ

The higher kr2
k is relative to the path width w, the higher

the accuracy of this approximation. Note that the squared
error is scaled by kr2 and hence, errors in the future are dis-
counted. This is a consequence of themodel of the cursor dy-
namics in Eq. 2.

Using Eq. 7 and removing all terms that do not depend on
ut, we can derive a simplified cost function

~Lt ¼
Xh

k¼sþ 1

x̂tþ k � mtþ kð Þ2
2kr2 þ kjut�sþ k�1j2

� �
ð8Þ

Equation 8 shows that the trade-off between accuracy and
the magnitude of the motor commands is controlled by r2k.
We therefore can eliminate one parameter and use the equiv-
alent cost function

~Lt ¼
Xh

k¼sþ 1

x̂tþ k � mtþ kð Þ2
2k

þ ~kjut�sþ k�1j2
� �

with ~k ¼ r2k

ð9Þ
The gradient of ~Lt is given by

o~Lt

outþ j
¼ 2~kutþ j þ

Xh
k¼jþðsþ 1Þ

x̂tþ k � mtþ kð Þ
k

� �
ð10Þ

with j = 0,. . ., h – (s þ 1). The Hessian of ~Lt is given by

o2 ~Lt

outþmoutþ n
¼ 2dm;n~k þ

Xh
k¼max m;nð Þþ sþ 1ð Þ

1
k

ð11Þ

with m, n = 0,. . ., h – (s þ 1). For ~k ¼ 0, all pivots of the
Hessian matrix in Eq. 11 are positive and therefore the
Hessian is positive definite for ~k ¼ 0. For the general case
~k > 0, the Hessian in Eq. 11 remains positive definite asH2 =
H1 þ D is positive definite ifH1 is positive definite and D is a
diagonal matrix with only positive diagonal entries. Given
the positive definiteness of the Hessian in Eq. 11, we can con-
clude that the cost function ~Lt is strictly convex with a
unique global minimum. Setting the gradient (Eq. 11) to 0
defines a system of h – s linear equations with h – s
unknowns [ut,. . ., ut þ h – (s þ 1)], which solution minimizes
~Lt. The solution can be computed efficiently using standard
numerical techniques. We used the linsolve function of
MATLAB, which uses LU factorization.

When applying the model to the searchlight path wemade
the additional assumption that the model horizon increases
with searchlight length s up to a maximal value hmax beyond
which themodel horizon remains constant:

h sð Þ ¼ s; s < hmax
hmax; s � hmax

�
ð12Þ

We used the same time step of 1/30 s in the model as in
the experiment. For a given set of model parameters (hmax, k,

s, and r2) we simulated the model 100 times with independ-
ent realizations of the motor noise. For each model trajec-
tory, we computed the time inside the path and the lag in
the same way as they were computed for the subjects’ trajec-
tories. To obtain the time inside the path and the lag for a set
of model parameters we averaged the obtained values across
the 100 noise realizations.

The model was simulated on the searchlight paths to
study the influence of the model horizon hmax and the motor
noise r2 on performance and lag. To this end, we first simu-
lated the model for the shortest searchlight paths (10%)
assuming that hmax is at least as long as the searchlight
length at 10% (=3 cm) and using a motor delay of s = 200 ms.
The model was simulated using 50 logarithmically spaced
values between 10�3 and 10þ 3 for k and 45 values for r2 com-
posed of 5 linearly spaced values between 0 and 0.04 and 40
linearly spaced values between 0.05 and 2. Together, this
results in 45 � 50 = 2,250 different parameter sets in total.
From these sets, we chose values for k and r2, which yielded
a similar performance and lag as experimentally observed
for the 10% searchlight (i.e., 45% time inside the path and a
lag of 200 ms). With the use of these parameter values, the
model was then simulated for all searchlight paths for differ-
ent model horizons. From the resulting performance as a
function of searchlight lengths we computed the change-
point in the same way as for the experimental data. In addi-
tion, the model was also simulated for different values of the
motor noise and the changepoint of the performance was
computed for different noise levels as above. These analyses
allowed us to investigate the influence of the model horizon
and model motor noise on the changepoint of the perform-
ance curve (see Fig. 5). To establish the robustness of the
model results, we repeated the above simulations and analy-
ses for different values of the motor delay using s = 33 ms,
100ms, and 233 ms.

Parts of the modeling computations were run on the high-
performance computing cluster NEMO of the University of
Freiburg (https://www.nemo.uni-freiburg.de/) using Broadwell
E5-2630v4 2.2 GHz CPUs.

RESULTS

Learning the Tracking Skill

We designed an experiment where subjects had to a track
a path moving toward them at a fixed speed (Fig. 1A and
MATERIALS AND METHODS). The narrow and wiggly path was
moving downwards on a computer screen while the cursor
had a fixed vertical position in the bottom of the screen and
could only bemoved left or right. Accuracy, our performance
measure, was defined as the fraction of time that the cursor
spent inside the path boundaries. One group of subjects (the
expert group, n = 32) trained this task for 30 min on each of 5
consecutive days. Another group (the naive group, n = 30)
did not have any training at all. Both groups then performed
a testing block that we describe below.

Over the course of five training days, the experts’ accuracy
increased from 66.9±8.0% to 79.6±6.4% (means ± SD across
subjects, first and last training day respectively) as shown on
Fig. 1, B and C, with the difference being easily noticeable
and statistically significant (P = 8 � 10�7, z = 4.9, Wilcoxon
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signed rank test; Cohen’s d = 1.8, n = 32). As all paths gener-
ated during the training were different, this difference can-
not be ascribed to memorizing the path, therefore this
improvement represents the genuine acquisition of the skill
of path tracking.

Searchlight Testing

To unravel the mechanisms of skill acquisition we
designed testing trials called “searchlight trials,” during
which subjects had to track curved paths as usual but
could only see a certain part of the path (fixed distance s)
ahead of the cursor. The searchlight length s varied
between 10% and 100% of the whole path length in steps of
10% (the minimal s was �3 cm) to probe subjects’ planning
horizon. Searchlight testing was conducted after 5 days of
training for experts or immediately for novices. During the
testing block all subjects completed 30 1-min-long trials (3
repetitions of each of the 10 values of s). The average accu-
racy at full searchlight s = 100% was 82.8 ± 7.5% for the
expert group and 65.7±8.4% for the naive group (means ± SD
across subjects), with the difference being highly significant
(P = 2 � 10�9, z = 6.0, Wilcoxon-Mann-Whitney rank sum test,
Cohen’s d = 2.2, n = 62). The performance of the naive subjects
during 100% searchlight trials (65.7±8.4%) was not signifi-
cantly different from the initial performance of the expert
subjects on their first day of training (66.9±8.0%), where
searchlight was also 100% (P = 0.76, z = 0.3, Wilcoxon-Mann-
Whitney rank sum test, Cohen’s d = 0.15, n = 62).

Before we present the rest of the data, let us consider sev-
eral possible ways in which the accuracy can depend on the
searchlight length (Fig. 2A). For each subject, accuracy
should be a nondecreasing function of searchlight length.
The data presented in Ref. 17 indicate that this function
tends to become flat, i.e., subjects reach a performance pla-
teau, after a certain value of the searchlight length that we
will call planning horizon (Fig. 2A, top), while we assume all
subjects will be constrained to the similar poor performance
at the smallest searchlight. For the expert group, this func-
tion has to reach a higher point at s = 100%, which could be
achieved in one of two ways. Firstly, it could do so because
the initial rise becomes steeper (Fig. 2A, bottom left), due
to increased motor acuity after skill learning (3, 22).
Alternatively, the expert group could reach a higher point at
s = 100% because the initial rise continues longer. This would
suggest an increase in the planning horizon (Fig. 2A, bottom
right) over which subjects plan and execute motor com-
mands, described well by a receding horizon control (14). It
is likely a combination of both is employed by the human
motor system during skill learning.

Figure 2B shows subjects’ accuracy in the searchlights tri-
als as a function of the searchlight length s. All subjects were
strongly handicapped at short searchlights, and at the short-
est searchlight the performance of the two groups was simi-
lar with experts being only marginally better (42.5± 2.3% for
the expert group, 41.4± 1.8% for the naive group, P = 0.042,
z = 2.0 Wilcoxon-Mann-Whitney rank sum test; Cohen’s d =
0.5, n = 62).

Visual inspection of Fig. 2B suggests that both effects
sketched in Fig. 2A contribute to expert performance. First,
the planning horizon for the expert group was longer than

for the naive group; and second, the expert group had higher
accuracies in the initial part of the performance curve,
before the performance plateaus, which could be explained
by an increasedmotor acuity.

To investigate differences in tracking skill between
groups, we estimated the planning horizons of individual
subjects. For this, we fit each subject’s performance (y)
with a changepoint linear-constant curve (see MATERIALS

AND METHODS), where the location of the changepoint
defines the horizon length. The initial slope of the change-
point model was significantly different between the two
groups (3.7 ± 1.2%/cm in the expert group vs. 3.0 ± 1.2%/cm
in the naive group, means ± SD; medians: 3.6%/cm vs.
2.6%/cm, P = 0.008, z = 2.6, Wilcoxon-Mann-Whitney rank
sum test; Cohen’s d = 0.6, n = 62). Figure 2C shows that
there was a positive correlation between the initial slope
and asymptote accuracy (R = 0.49, P = 6 � 10�5, Spearman
correlation, n = 62).

At the same time, we found that the novice group had an
average horizon length of 11.5± 3.6 cm (means ± SD; median:
12.0 cm) and the expert group a horizon length of 14.2±3.5
cm (median: 13.2 cm), with statistically significant difference
(P = 0.007, z = 2.7, Wilcoxon-Mann-Whitney rank sum test;
Cohen’s d = 0.8, n = 62). We also found a positive correlation
between the horizon length and the asymptotic performance
(R = 0.34, P = 0.006, Spearman correlation, n = 62) (Fig. 2D).

In addition to the changepoint model, we also quantified
the “effective” planning horizon using a single exponential
to fit the individual subjects’ performance data (see
MATERIALS AND METHODS). This analysis confirmed our results
(Fig. 2E). We again observed a significant difference in the
effective horizon length between the two groups (14.76±4.6
cm vs. 11.04±4.7 cm, means ± SD for both groups, medians:
13.6 cm and 10.7 cm, P = 0.002, z = 3.0, Wilcoxon-Mann-
Whitney rank sum test; Cohen’s d = 0.8, n = 62). Again, we
found a positive correlation between the asymptote perform-
ance and the effective horizon length (R = 0.43, P = 0.0008,
Spearman correlation, n = 62).

We therefore conclude that the difference between expert
and naive performances is a combination of both possibil-
ities presented in Fig. 2A. Using the expert and naive median
estimates of the intercept, the slope, and the horizon in the
changepoint model, we can estimate the contribution of
both effects on the asymptote performance. The change-
point model asymptote performance for the naive group was
63.5%, compared to 78.7% for the expert group. The model
performance of the expert group at the naive horizon was
74.2%. Hence, �71% of the expert performance gain of 15.2%,
was due to the increase in the initial slope (possibly due to
increased motor acuity), and the remaining 29% can be
attributed to the increase in planning horizon. The identical
procedure with mean model parameter estimates instead of
median estimates, yields 44% attributable to motor acuity
and 56% attributable to planning horizon. However, these
results do not elucidate whether these processes are causally
related (see DISCUSSION).

Trajectory Analysis

Naive subjects performed worse than the expert subjects
at long searchlights but all subjects performed almost
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equally badly at short searchlights. What kinematic features
can these differences be attributed to?

Clearly, at short searchlights, performance has to be re-
active. To measure how quickly changes in the path were
reflected in the motor commands, we computed the time
lag between cursor trajectory and path midline (the lag
maximizing cross correlation between them). This analy-
sis was done by pooling all trials for each subject and
searchlight length together (see MATERIALS AND METHODS).
As Fig. 3A shows, the lag was �200 ms at s = 10% for all
subjects and dropped to �0 ms at s = 50% for the expert
group. While many naive subjects also decreased their
lags to 0, 10 out of 30 never achieved the 0-ms lag. The
five naive subjects showing the largest lags at large
searchlights were also those with the worst performance
(Fig. 3B). Therefore, there was a strong negative correla-
tion between the asymptote lag (mean across s = 80–
100%) and the asymptote performance (mean across s =

80–100%) of R = �0.58 (Fig. 3B, P = 8 � 10�7, Spearman
correlation, n = 62).

We used the obtained lags to compute the root-mean-
squared-error (RMSE) between the cursor trajectory and the
lagged midline. The obtained RMSE was consistently lower
in the expert group than in the naive group, with difference
increasing with searchlight length (Fig. 3C). The asymptote
RMSE was 1.67±0.31 cm (means ± SD across subjects; me-
dian: 1.69) in the naive group and 1.23±0.30 cm (median:
1.13) in the expert group (P = 2.14 � 10�6, z = 4.74, Wilcoxon-
Mann-Whitney rank sum test; Cohen’s d = 1.44, n = 62) and
was negatively correlated with the asymptote performance
(Fig. 3D; R = �0.79, P = 0, Spearman correlation, n = 62). This
shows that the naive subjects were not simply lagging
behind the optimal trajectory, but did larger errors even after
accounting for the lag.

Next, for each testing path we found all segments exhibit-
ing sharp leftward or rightward bends (see MATERIALS AND
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Figure 2. Searchlight testing. A: expert subjects were trained to have a higher performance at full searchlight length (top). This could be achieved by an
increased initial slope (bottom left) at smaller searchlight length and/or an increased planning horizon as indicated with dashed vertical lines (bottom
right). B: mean tracking performance for each searchlight length for each individual subject, in blue for the expert group and in red for the naive group.
C: relationship between the asymptote performance and the initial slope in in the changepoint linear-constant model (			P < 0.001). D and E: planning
horizon for each subject was defined by fitting a changepoint (changep.) linear-constant curve (D) or an exponential (exp.) curve (E) (see text). Both mod-
els yield an asymptote performance for each subject; the changepoint model yields a horizon length and the exponential fit yields an “effective” horizon
length. The scatter plots with marginal distributions show relation between the asymptote performance (as a proxy for subjects’ skill) and their planning
horizon. Spearman’s correlation coefficients are shown on the plot (		P< 0.01, 			P< 0.001). Color of the dot indicates the group.
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METHODS, our inclusion criteria yielded 13± 5 segments per
path, means ± SD). For each searchlight length and for each
subject, we computed the average cursor trajectory over all
segments (n = 38±8 segments per searchlight) after aligning
all segments on the bend position (Fig. 4, leftward bends
were flipped to align them with the rightward bends). At s =
10%, all subjects from both groups follow very similar lagged

trajectories, resulting in low accuracy. As searchlight
increases, expert subjects reach zero lag and choose more
and more similar trajectories, whereas naive subjects dem-
onstrate a wide variety of trajectories with some of them fail-
ing to reach zero lag and others failing to keep the average
trajectory inside the path boundaries. To visualize this, we
plotted the kernel density estimate 75% coverage contour of
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Figure 3. Analysis of trajectories. A:mean time lag between
cursor trajectory and path midline, for each searchlight
length for each individual subject (faint lines) and mean of
per-subject values (bold lines), in blue for the expert group
and in red for the naive group. B: asymptote lag and asymp-
tote performance across subjects. Correlation coefficient is
shown on the plot (			P < 0.001). Color of the dot indicates
the group. C and D: the same is shown for the root-mean-
squared-error (RMSE) between the cursor trajectory and the
path midline.
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Figure 4. Average per-subject trajectories in sharp bends (leftward bends were flipped to align them with the rightward bends). Each trajectory is
averaged across approximately 40 bends identified in all paths (the number of bends varied across searchlight lengths; see Trajectory Analysis
in MATERIALS AND METHODS). Color of the lines indicates the group. Black lines show average path contour. Dots show turning points of the trajec-
tory. Contour lines show the kernel density estimate 75% coverage areas. Subplots correspond to searchlight lengths s = 10%, 20%, 50%, 60%,
90%, and 100%.
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inflection points for each group. As the searchlight increases,
the groups become less overlapping and the naive group
appears to form a bimodal distribution (Fig. 4).

To study the changes in movement variability produced
by subjects after skill learning, we additionally looked at the
within-subject variability during the segments defined above
at 100% searchlight and compared this across groups. To
measure the variability in subject’s movement on a single
subject level, we summed the standard deviations in both x-
and y-directions across inflection points of single segments.
The subjects’ averages of these positions are shown in Fig. 4.
The summed standard deviations were significantly lower
for the expert group (median summed SD = 3.52 cm) than for
the naive group (median summed SD = 5.53 cm) (P = 1.8� 10�8,
z = 5.63, Wilcoxon�Mann�Whitney rank sum test, Cohen’s d =
1.95, N = 62). This effect was not present at 10% searchlight
(expert median summed SD = 7.50 cm, naive median summed
SD = 7.63 cm, P = 0.69, z = 0.40, Wilcoxon�Mann�Whitney
rank sum test, Cohen’s d = 0.18,N = 62).

In summary, at very short searchlights all subjects per-
formed poorly because in this reactive regime their trajecto-
ries lagged behind the path. At longer searchlights the expert
subjects were able to plan their movement to accommodate
the bends (the longer the searchlight the better), but naive
subjects failed to do so in various respects: either still lagging
behind, or not being able to execute the fine movements due
to lower motor acuity and higher movement variability, or
not being able to plan a good trajectory.

Receding Horizon Model

Next, we modeled subjects’ behavior by receding horizon
control (RHC). Previously, optimal feedback control models
have been proposed as mechanisms by which the human
brain computesmotor commands. Here we intend to expand
this framework to include receding horizon control, a ver-
sion of optimal feedback control with finite horizons, as a
mechanism by whichmotor commands are computed by the
human brain. We illustrate this here by showing that such
an approach is able to capture some crucial features of the
behavioral results from our experiments.

In RHC, a sequence of motor commands is computed to
minimize the expected cost over a future time interval of fi-
nite length, i.e., the horizon. After the first motor command
is applied, the optimization procedure is repeated using a
time interval shifted one time step ahead. See MATERIALS AND

METHODS for a more detailed and formal description of RHC.
As cost function, we used the weighted sum of a measure of
inaccuracy (i.e., probability of being outside the path) and
the magnitude of the motor cost (see MATERIALS AND METHODS

for details). Cost functions with a similar trade-off between
movement accuracy and motor command magnitude have
been used previously to describe human motor behavior in
different tasks (11, 13, 21). The model has four parameters:
horizon (hmax), motor noise (r2), motor delay (s), and motor
command penalty weight (k).

We ran the model on the experimental paths to obtain
simulated movement trajectories from which task perform-
ance and lag could be computed in the same way as for the
experimental trajectories (Figs. 2 and 3). To determine the
model parameters k and r2, we simulated the model for

the shortest searchlight paths (10%) using different values of
k and r2 while fixing s at 200ms and assuming that the hori-
zon covers at least the length of the 10% searchlight (Fig. 5,
A–C). From this parameter scan, we determined the values
of k (0.776) and r2 (0.271) for which the model yielded
approximately the experimentally observed task perform-
ance and lag of 45% and 200 ms for the 10% searchlight
paths (cf. Figs. 2 and 3).

Using these parameter values we then simulated the
model for all searchlight paths for varying values of the hori-
zon (Fig. 5, D and E). As a sanity check, we also simulated
the model for varying values of the motor noise with a fixed
value of the horizon hmax =14.8 cm (Fig. 5,G andH). Our sim-
ulations revealed that both, a larger model horizon as well as
a smaller motor noise parameter increased the task perform-
ance and decreased the lag for large searchlight lengths.
Hence, the experimentally observed higher performances
and smaller lags of expert subjects compared to naive (Figs.
2B and 3A) could be explained either by an increased model
horizon or by reduced motor noise in the model. However,
the searchlight length at which the task performance of the
model reached a plateau increased withmodel horizon while
it remained constant or decreased with a smaller motor
noise parameter (Fig. 5, F and I). Experimentally, on the
other hand, we observed that subjects with a higher task per-
formance reached their performance plateau at higher
searchlights (Fig. 2, D and E). This correlation between per-
formance and plateau onset, that was observed experimen-
tally, cannot be explained by the variation of the motor noise
parameter across subjects, but is only consistent with an
increase of the model horizon parameter for subjects with
higher performance. Moreover, with changing motor noise,
the model predicted substantial changes in task perform-
ance and lag not only for large but also for short searchlight
lengths while experimentally the differences between expert
and naive subjects were small for the 10% searchlight length.
Model predictions for changes in planning horizon were
again consistent with this experimental observation.

The analyses of Fig. 5, G–I, were repeated for various
model horizons between 3.4 cm and 29.6 cm (not shown)
showing similar patterns as presented in Fig. 5, G–I, for hmax

>3.4 cm: the performance changepoint tended to remain
constant or increase with increasing motor noise; changing
motor noise induced a clear change of performance and lag
also at short searchlights. For hmax = 3.4 cm, the performance
was essentially constant across searchlights for all values of
the noise. Furthermore, we repeated the model simulations
for motor delays of s = 33 ms, s = 100 ms, and s = 233 ms and
obtained qualitatively similar results (not shown).

DISCUSSION
We used a paradigm that allowed us to study skill develop-

ment when humans had to track an unpredictable spatial
path. The skill requires fast reactions to new upcoming
bends in the road but also a substantial “planning ahead”
component, i.e., the anticipation and preplanning of move-
ments that have to be made in the near future. We used the
accuracy, i.e., the fraction of time the cursor was inside the
path boundaries, as the measure of performance. We
observed a substantial improvement in accuracy after 5 days
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of training (Fig. 1, B and C). The paths were different on ev-
ery trial, so the improvement in performance cannot be
attributed to amemory for the sequence.

What changes in the motor system occur through learning
that allowed skilled subjects to perform better? One compo-
nent of this improvement is motor acuity (3, 22) and corre-
sponds to the subjects’ ability to execute motor commands
more accurately. We hypothesized that an additional compo-
nent is an increased ability to take into account approaching
path bends and to prepare for an upcoming movement seg-
ment. We directly estimated both effects by using a

searchlight testing where only a part of the approaching
curve was visible. In agreement with our hypothesis, we
found that subjects with a higher tracking skill demonstrated
larger planning horizons: on average �14 cm for the expert
group versus �11 cm for the naive group, corresponding to
the time horizons of �0.4 s and �0.3 s, respectively. Our
results suggest that the increase in planning horizon is not
an epiphenomenon but is causally related to the perform-
ance increase, as expert subjects showed worse performance
when the searchlight was reduced below their planning hori-
zon (Fig. 2C). We estimate that between one-third and one-

Figure 5. Task performance (A) and lag (B)
for model simulations of the 10% search-
light paths as a function of k and r2 assum-
ing s = 200 ms and a model horizon of at
least the length of the 10% searchlight.
Note that for high values of k and r2 the
lag may not be reliable due to small peaks
in the cross correlogram between the
movement trajectories predicted by the
model and the paths (C). The white lines in
A and B show the value of the parameters
which yielded a task performance and a
lag similar to what was experimentally
observed (Figs. 2 and 3). The intersection
of the two lines was at k = 0.77 and
r2 =0.27. Using these parameter values,
the model was simulated for all search-
light lengths and for various model hori-
zons yielding the task performance and
lag shown in D and E. The performance
curves in D were analyzed using the same
changepoint analysis as for the experi-
mentally obtained performance curves
demonstrating an increasing changepoint
with increasing model horizon before flat-
tening out at around 10 cm (F) except for
very short model horizons for which the
performance curves were essentially flat
and therefore, the changepoint could not
reliably be detected. Using a fixed horizon
of hmax =14.8 cm and k = 0.77, model per-
formance and lag were computed for
varying motor noise (G and H) and the
changepoint of the performance was cal-
culated for different values of the motor
noise (I).
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half of the performance increase in the expert group was due
to the longer planning horizon.

The improvement of acuity and the extension of planning
horizon are not necessarily independent processes and may
influence each other. For example, it is possible that improved
acuity frees up cognitive resources that allow the expansion of
planning horizon. Future work should investigate the causal
relationship between these two aspects of skill learning.

Note that “planning”/“preparing” the movement can be
interpreted differently depending on the computational
approach. In the framework of optimal control (13), subjects
do not plan the actual trajectory to be followed, but instead
use an optimal time-dependent feedback policy and then
execute the movement according to this policy. The
observed increase in planning horizon can be interpreted in
the framework of model predictive control, also known as
receding horizon control, RHC (14). In RHC, the optimal con-
trol policy is computed for a finite and limited planning hori-
zon, which may not capture the whole duration of the trial.
This policy is then applied for the next control step, which is
typically very short, and the planning horizon is then shifted
one step forward to compute a new policy. Hence, RHC does
not use a precomputed policy, optimal for an infinite hori-
zon, but a policy which is only optimal for the current plan-
ning horizon. Increasing the length of the planning horizon
is therefore likely to increase the accuracy of the control pol-
icy. In our experiments, this would allow for a larger fraction
of time spent within the path boundaries. We designed a
simple RHC model to test directly which components in the
model would have to change through training to quantita-
tively explain the subject’s behavior. The dynamics of move-
ment and the cost function were modeled in line with
previous studies that used optimal control to describe
human behavior in various motor control and learning tasks
(11, 13, 21). We ran our RHCmodel on the experimental paths
and demonstrated that it yields qualitatively correct predic-
tions: larger value of model horizons led to performance
similar to that of the experts’ subjects. Our findings, thus,
demonstrate that subjects’ behavior can be understood in
the context of RHC, and longer planning horizons of the
expert group indicate that subjects learn how to take
advantage of future path information to improve motor
performance.

Despite a clear difference in the distribution of planning
horizons between the naive and the expert groups (Fig. 2D),
there was a substantial overlap: the planning horizon of
many naive and expert subjects were similar. While this
might simply reflect a moderate effect size combined with
intersubject variability and measurement noise, it also
remains a possibility that the difference between groups was
largely caused by naive subjects with very low horizons and
expert subjects with very high horizons.

Related Work

Ideas like the RHC were put forward in a recent study
(23) that suggested that movements are broken up in
“chunks” to deal with the computational complexity of
planning over long horizons. That study suggests that
monkeys increase the length of their movement chunks
during extended motor learning over the course of many

days, which may be explained by monkeys increasing their
planning horizon with learning. At the same time, the effi-
ciency of movement control within the chunks improved
with learning which may also be the result of a longer
horizon. Despite these potential consistencies with our
approach we note that in their model [Ramkumar et al.
(23)] assumed that chunks are separated by halting points
(i.e., points of zero speed) and movements within chunks
are optimized independently from each other. Our RHC
model does not have independent movement elements,
but movements are optimized continuously.

Even though our study, to the best of our knowledge, is
the first to directly investigate the evolution of the planning
horizon during continuous path tracking, an increase in the
planning horizon after learning has been recently demon-
strated when learning sequences of finger movements (24).
Similar path tracking tasks have been used before (17). Using
a track that was drawn on a rotating paper roll, these early
studies found that the accuracy of the tracking increased
with practice and with increasing searchlight length [which
was modified by physically occluding part of the paper roll
(17), p. 187]. These studies, however, did not investigate the
effect of learning on the planning horizon.

More recent studies used path tracking tasks where the
goal was to move as fast as possible while maintaining
the accuracy (instead of moving at a fixed speed). In all of
these studies the identical path was repeatedly presented. In
one study, subjects had to track a fixed maze without visual
feedback and learnt to do it faster as the experiment pro-
gressed (9); there the subjects had to once “discover” and
then remember the correct way through the maze. In
another series of experiments, Shmuelof et al. (3) asked sub-
jects to track two fixed semicircular paths. Subjects became
faster and more accurate over the course of several days, but
this increase in the speed and accuracy did not generalize to
untrained paths (22). In contrast to these previous path track-
ing studies, we used randomly generated paths throughout
the experiment. By investigating the generalization of the
path tracking skill to novel paths we could reveal an increas-
ing planning horizon with learning.

The planning horizon could possibly be inferred from the
distance the subject gazes ahead of the cursor, and the inclu-
sion of eye movement data could provide an interesting
extension for future work. However, eye movement record-
ings often do not provide a clear answer in these types of
experiments (25–27) and the searchlight paradigm remains
the most direct avenue of establishing how much informa-
tion is used to guide behavior.

Conclusions

In conclusion, we have established that people are able to
learn the skill of path tracking and improve their skill over 5
days of training. This increase in motor skill is associated
with the increased motor acuity and increased planning ho-
rizon. The dynamics of preplanning can be well described by
a receding horizon control model.

DATA AVAILABILITY
All analysis code is available at https://github.com/dkobak/
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