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One of the most ubiquitous analysis tools in single-cell transcrip-
tomics and cytometry is t-distributed stochastic neighbor embed-
ding (t-SNE)1, which is used to visualize individual cells as points 
on a two-dimensional scatterplot such that similar cells are posi-
tioned close together2. A related algorithm, called uniform manifold 
approximation and projection (UMAP)3, has attracted substantial 
attention in the single-cell community4. In Nature Biotechnology, 
Becht et al.4 argued that UMAP is preferable to t-SNE because it bet-
ter preserves the global structure of the data and is more consistent 
across runs. Here we show that this alleged superiority of UMAP 
can be entirely attributed to different choices of initialization in the 
implementations used by Becht et al.: the t-SNE implementations by 
default used random initialization, while the UMAP implementa-
tion used a technique called Laplacian eigenmaps (LE)5 to initialize 
the embedding. We show that UMAP with random initialization 
preserves global structure as poorly as t-SNE with random initial-
ization, while t-SNE with informative initialization performs as 
well as UMAP with informative initialization. On the basis of these 
observations, we argue that there is currently no evidence that the 
UMAP algorithm per se has any advantage over t-SNE in terms of 
preserving global structure. We also contend that these algorithms 
should always use informative initialization by default.

At the core of both t-SNE and UMAP are loss functions that 
make similar points attract each other and push dissimilar points 
away from each other. Both algorithms minimize their loss func-
tions by using gradient descent. Gradient descent begins with some 
initial configuration of points, and with each iteration the points 
are moved to decrease the loss function. The specific implementa-
tions of these algorithms used by Becht et al. differed in how the 
initial configuration of points was chosen: the t-SNE implementa-
tions placed the points randomly, whereas the UMAP implementa-
tion used LE5, an algorithm that can often achieve globally accurate 
embedding on its own6. The effect of this difference on how well 
the two algorithms preserve global structure was not discussed or 
investigated by Becht et al.

We can illustrate the importance of initialization for both algo-
rithms using a simple toy dataset (Fig. 1). We sampled n = 7,000 
points from a circle with some added Gaussian noise and used 
UMAP and t-SNE to construct an embedding. We kept all parame-
ters for both algorithms at their default values and only changed the 
initialization. The t-SNE algorithm with random initialization pro-
duced a knot; UMAP with random initialization produced a tangled 
web with multiple tears. In both cases, the global structure was evi-
dently not preserved; indeed, gradient descent in t-SNE and UMAP 
only pulls close neighbors together and is not much influenced by 
the global arrangement of points. At the same time, LE recovers the 

original circle for this toy dataset and, when used for initialization, 
strongly improves the UMAP result. A method often recommended 
for initialization in t-SNE is principal component analysis (PCA)2. 
Here PCA also recovers the original circle and strongly improves 
the t-SNE result. In both cases, only with informative initializa-
tion can UMAP and t-SNE produce a faithful representation of the 
closed one-dimensional manifold—the circle.

Using the code published by Becht et al., we analyzed the sepa-
rate effects of initialization and algorithm on their results by adding 
UMAP with random initialization and t-SNE (using FIt-SNE7) with 
PCA initialization to the benchmarking comparison. Apart from 
the initialization, both algorithms were run with the same param-
eters as in Becht et al. We used all three datasets analyzed in the 
original publication (sample sizes from 320,000 to 820,000 cells)8–10.  
To quantify preservation of global structure, Becht et al. com-
puted Pearson correlation between pairwise Euclidean distances 
in high-dimensional space and in the embedding. To quantify 
the reproducibility of the embedding, the authors embedded ran-
dom subsamples of the data and measured the correlation of the 
coordinates of subsample embeddings with the coordinates of the 
full-dataset embeddings (up to symmetries around the coordinate 
axes). Our results show that t-SNE and UMAP with random ini-
tialization perform similarly poorly with regard to both metrics, 
whereas t-SNE and UMAP with PCA and LE initialization, respec-
tively, perform similarly well (Table 1). See Extended Data Figs. 1–6 
for the exact analogs of the original figures from Becht et al.

Becht et al. wrote that their findings were “consistent with the 
idea” that UMAP performs “optimizations that are sensitive to 
global features of the data, thus reaching similar arrangements more 
consistently.” Our results show that this conclusion can be mislead-
ing: their findings were in fact not due to UMAP optimizations but 
rather to its initialization.

We have recently argued that, for single-cell transcriptomic data, 
t-SNE with PCA initialization produces more meaningful embed-
dings than t-SNE with random initialization2. The findings of Becht 
et al., when interpreted correctly, also underscore the importance of 
using informative initialization and suggest that it should be used 
as the default option in t-SNE and UMAP implementations. PCA 
initialization has always been the default in openTSNE11, a Python 
reimplementation of FIt-SNE, and FIt-SNE v.1.2 now also uses it 
by default. OpenTSNE v.0.4 now also supports LE initialization. 
Importantly, t-SNE with non-random initialization should not be 
considered a new algorithm or even an extension of the original 
t-SNE; it is exactly the same algorithm with the same loss function, 
and almost any existing implementation trivially allows the use of 
any given initialization, including the PCA-based one.
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Our aim here was not to argue which algorithm, t-SNE or UMAP, 
is more suitable for single-cell studies. Once informative initialization 
is used, the two algorithms appear to preserve the global structure 
similarly well, and modern implementations of the two algorithms 
work with similar speed (the widespread opinion that UMAP is much 
faster than t-SNE is outdated: for two-dimensional embeddings, 
FIt-SNE works at least as quickly2,7). When comparing the resulting 
embeddings (Extended Data Figs. 3–6), the most striking difference 
is that UMAP produces denser, more compact clusters than t-SNE, 
with more white space in between. Very similar embeddings can be 
produced by t-SNE with so-called exaggeration, which increases the 
attractive forces by a constant factor2. Future research in machine 
learning is needed to pinpoint the exact mathematical and algorithmic 
origins of this difference12, and future research in single-cell biology 
is needed to decide which algorithm is more faithful to the underly-
ing biological data. It remains challenging to measure how faithful 
a given embedding is, and we believe this is an important topic for 
future work in data visualization for single-cell biology and beyond.
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Fig. 1 | t-SNE and UMAP with random and non-random initialization. Embeddings of n = 7,000 points sampled from a circle with a small amount of 
Gaussian noise (σ = r/1,000, where r is the circle’s radius). We used random and PCA initialization for t-SNE (openTSNE11 v.0.4.4) and random and LE 
initialization for UMAP (v.0.4.6). All other parameters were kept as default. For this dataset, PCA and LE give the same initialization. Note that openTSNE 
scales PCA initialization to have s.d. = 0.0001, which is the default s.d. for random initialization in t-SNE2; similarly, UMAP scales the LE result to have a 
span of 20, which is the value it uses for random initialization.

Table 1 | Performance of t-SNE and UMAP with random and 
informative initialization using datasets and evaluation metrics 
from Becht et al.

Preservation of pairwise 
distances

reproducibility of 
large-scale structuresa

Dataset Samusik 
et al.8

Wong 
et al.9

han 
et al.10

Samusik 
et al.8

Wong 
et al.9

han 
et al.10

UMAP, LE 
initialization

0.70 0.57 0.30 0.94 0.98 0.49

UMAP, 
random 
initialization

0.41 0.38 0.14 0.24 0.21 0.22

t-SNE, PCA 
initialization

0.59 0.66 0.28 0.95 0.98 0.92

t-SNE, random 
initialization

0.32 0.36 0.18 0.29 0.33 0.06

aFor the reproducibility metric, the average over three random subsamples of size n = 200,000 is 
reported. Bold numbers denote the maximum value in each column.
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Data availability
The data in this study were sourced from refs. 8–10.

Code availability
The R code extending the analysis of Becht et al. is available at https://github.com/
linqiaozhi/DR_benchmark_initialization. The Python code used to produce Fig. 1 is 
available at https://github.com/dkobak/tsne-umap-init.
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Extended Data Fig. 1 | Preservation of pairwise distances in embeddings. The exact analogue of Fig. 5 in the original publication by Becht et al.4 To 
quote the original caption: ‘Box plots represent distances across pairs of points in the embeddings, binned using 50 equal-width bins over the pairwise 
distances in the original space using 10,000 randomly selected points, leading to 49,995,000 pairs of pairwise distances. […] The value of the Pearson 
correlation coefficient computed over the pairs of pairwise distances is reported. For the box plots, the central bar represents the median, and the top and 
bottom boundary of the boxes represent the 75th and 25th percentiles, respectively. The whiskers represent 1.5 times the interquartile range above (or, 
respectively, below) the top (or, respectively, bottom) box boundary, truncated to the data range if applicable.’ We recomputed all embeddings (except for 
the UMAP with LE initialization of the Wong et al.9 dataset, which was loaded from external source, as in the code accompanying the original publication). 
All algorithms were run with the same parameters as in the original publication (which always were the default parameters, apart from n_neighbors set to 
30 in UMAP for the Han et al.10 dataset; we kept this value for both initializations). We used the same version of FIt-SNE as in the original publication, to 
make sure that all the default parameters stayed the same. Y-axis goes from zero to the maximum pairwise distance in all subplots.
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Extended Data Fig. 2 | reproducibility of large-scale structures in embeddings. The exact analogue of Fig. 6 in the original publication4. To quote the 
original caption: ‘Bar plots represent the average unsigned Pearson correlation coefficient of the points’ coordinates in the embedding of subsamples 
versus in the embedding of the full dataset, thus measuring the correlation of coordinates in subsamples versus in the embedding of the full dataset, up to 
symmetries along the graph axes. Bar heights represent the average across three replicates and vertical bars the corresponding s.d.’
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Extended Data Fig. 3 | Qualitative assessment of the reproducibility of embeddings using the Samusik et al.8 dataset. The exact analogue of 
Supplementary Fig. 7a from the original publication4. To quote the original caption: ‘Embeddings of full datasets as well as subsamples of varying sizes 
replicated thrice for [four] dimensionality reduction methods. The color-code is generated using the embedding of the full dataset and propagated  
to the subsamples.’
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Extended Data Fig. 4 | Qualitative assessment of the reproducibility of embeddings using the Wong et al.9 dataset. The exact analogue of 
Supplementary Fig. 7b from the original publication4. To quote the original caption: ‘Embeddings of full datasets as well as subsamples of varying sizes 
replicated thrice for [four] dimensionality reduction methods. The color-code is generated using the embedding of the full dataset and propagated  
to the subsamples.’
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Extended Data Fig. 5 | Qualitative assessment of the reproducibility of embeddings using the han et al.10 dataset. The exact analogue of Supplementary 
Fig. 7c from the original publication4. To quote the original caption: ‘Embeddings of full datasets as well as subsamples of varying sizes replicated thrice for 
[four] dimensionality reduction methods. The color-code is generated using the embedding of the full dataset and propagated to the subsamples.’
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Extended Data Fig. 6 | Annotated embeddings of the Samusik_01 dataset (sample size n=86,864). Top row: UMAP with random initialization (left) and 
t-SNE with random initialization (right). Bottom row: UMAP with default initialization (left) and t-SNE with PCA initialization (right). The bottom-left and 
upper-right panels are analogues of Fig. 2a,b from the original publication4. Note that the T cells are not colocalized in the UMAP embedding with random 
initialization.
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