
Simple vs. multiple linear regression

Multiple linear regression has >1 predictor.
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Multiple linear regression

The model:

f(x) = β0 + β1x1 + β2x2 + . . . + βpxp.

It is convenient to define x0 ≡ 1. Then:

f(x) = β⃗ · x⃗ = β⊤x =
(
β0 · · · βp

) 
x0
...

xp


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The loss and the gradient

Using this notation, the mean-squared-error loss function becomes:

L(β) = 1
n

n∑
i=1

(
y(i) − β⊤x(i))2

.

Partial derivatives:

∂L
∂βk

= − 2
n

n∑
i=1

(
y(i) − β⊤x(i))x

(i)
k .

Gradient:

∇L = − 2
n

n∑
i=1

(
y(i) − β⊤x(i))x(i).
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Introducing design matrix

Let us collect all vectors x(i) into one matrix of size n × (p + 1):

X =


x(1)

x(2)

...
x(n)

 =


x

(1)
0 x

(1)
1 · · · x

(1)
p

x
(2)
0 x

(2)
1 · · · x

(2)
p

...
... . . . ...

x
(n)
0 x

(n)
1 · · · x

(n)
p

 =
(
x0 x1 · · · xp

)
.

Let us also collect all y values into a response vector:

y =


y(1)

y(2)

...
y(n)

 .
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Matrix multiplication is useful!

Given X and β, how to compute predicted values ŷ?

ŷ = Xβ =


x

(1)
0 x

(1)
1 · · · x

(1)
p

x
(2)
0 x

(2)
1 · · · x

(2)
p

...
... . . . ...

x
(n)
0 x

(n)
1 · · · x

(n)
p




β0

β1
...

βp

 =


ŷ(1)

ŷ(2)

...
ŷ(n)

 .
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Matrix calculus is useful!

Nowwe can write:

L = 1
n

n∑
i=1

(
y(i) −β⊤x(i))2 = 1

n

n∑
i=1

(
[y]i − [Xβ]i

)2 = 1
n

∥y−Xβ∥2.

Another way to write this (sometimes useful):

1
n

(y − Xβ)⊤(y − Xβ).

Gradient:

∇L = − 2
n

n∑
i=1

(
y(i) − β⊤x(i))x(i) = − 2

n
X⊤(y − Xβ).
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Matrix algebra is useful!

Gradient:
∇L = − 2

n
X⊤(y − Xβ).

Setting it to zero to derive the analytical solution:

− 2
n

X⊤(y − Xβ̂) = 0

X⊤Xβ̂ = X⊤y
β̂ = (X⊤X)−1X⊤y

Baby linear regression: β̂ =
∑

xiyi/
∑

x2
i .

Multiple linear regression: β̂ = (X⊤X)−1X⊤y.
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The role of (X⊤X)−1

If (X⊤X)−1 = I, then β̂ = X⊤y. When does this hold?

The element ij of this matrix is given by x⊤
i xj =

∑n
k=1 x

(k)
i x

(k)
j . So in

this case the features are orthonormal (orthogonal and have norm 1).

If all features have mean zero, are uncorrelated, and have norm equal to 1,
then β̂i = x⊤

i y (for i ̸= 0), i.e. regression coefficient for each predictor
can be computed independently (by p separate regressions).

Exercise: if all features have mean zero, then β̂0 = 1
n

∑
i yi. Note that

centering features does not affect the model:

f(x) = β0 + β1x1 + β2x2 + . . . + βpxp.
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Predicted values and the hat matrix

It is useful to write down the formula for ŷ:

ŷ = Xβ = X(X⊤X)−1X⊤y.

It can be understood as the orthogonal projection matrix in the
n-dimensional space!
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Singular value decomposition (SVD)

When X has orthonormal columns, i.e. X⊤X = I, then everything
simplifies a lot. What if it does not? We can transform it such that it does!

Non-trivial fact: any matrix X can be written as

X = USV⊤,

where U and V have orthonormal columns (left/right singular vectors)
and S is diagonal (with singular values).
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Geometry of SVD

Let us assume here that all the features and the response are centered (and
X does not contain the column of 1s).

Consider SVD of X = USV⊤.
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SVD is useful!

ŷ = Hy = X(X⊤X)−1X⊤y =
= USV⊤(VSU⊤USV⊤)−1VSU⊤y =
= USV⊤(VS2V⊤)−1VSU⊤y =
= USV⊤VS−2V⊤VSU⊤y =
= UU⊤y
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SVD is useful!

ŷ = Hy = X(X⊤X)−1X⊤y = UU⊤y

β̂ = (X⊤X)−1X⊤y = VS−1U⊤y

Note: the formula β̂ = (X⊤X)−1X⊤y is good for mathematical
analysis but terrible for computations. Never program your linear
regression solver like that :)
The lesson: strong correlations between features ⇒ small singular values
in X⊤X ⇒ possible numerical problems, estimated coefficients blowing
up, high estimation uncertainty.
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