Simple Vs. multiple linear regression

Multiple linear regression has >1 predictor.
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Multiple linear regression

The model:
f(x) = Po+ Brxr + foxa + ... + Bpxp.

Itis convenient to define zg = 1. Then:

To

f@)=F-7="x= (60 - B)
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The loss and the gradient

Using this notation, the mean-squared-error loss function becomes:

=1
Partial derivatives:
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Gradient:
9N L
AV - Z (y(l) _ IBTX(Z))X(Z).
=1
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Introducing deszgn Matrix

Let us collect all vectors x(*) into one matrix of size n. X (p + 1):
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Let us also collect all y values into a response vector:
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Matrix multiplication is useful!

Given X and 3, how to compute predicted values 3?

£
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Matrix calculus is useful!

Now we can write:

> (ly = *Hy XB|*.

=1 =1

3\*—‘

Another way to write this (sometimes useful):

(v~ XB)T(y - XB).

Gradient:
257 ()0 _ gTx @) = _2xT
Vo= 2340 - T = 2XT(y - Xg)
n - n
=1
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Matrix algebra is useful!

Gradient: 5
VL = —EXT(y - XpB).

Setting it to zero to derive the analytical solution:

2 R
—=XT(y-XB)=0
n
X'X3=X"y
B=X'X)"'X"y

Baby linear regression: B=Sawy z7.
Multiple linear regression: 8 = (X' X) ' X Ty.
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The role of (X 'X) !

If (XTX)"! = I, then 8 = X y. When does this hold?

The element i of this matrix is given by x,/ x; = Y1, xl(k)xg»k). Soin

this case the features are orthonormal (orthogonal and have norm 1).

If all features have mean zero, are uncorrelated, and have norm equal to 1,
then 3; = XZT ¥ (for i # 0), i.e. regression coefficient for each predictor

can be computed independently (by p separate regressions).

Exercise: if all features have mean zero, then 5y = % >; ¥i- Note that

centering features does not aftect the model:

f(x) = Po+ Brz1 + Poza + ... + Bpxp.
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Predicted values and the har matrix

It is useful to write down the formula for y:

y=XB=XX"X)"X"Ty.

It can be understood as the orthogonal projection matrix in the

n-dimensional space!
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Singular value decomposition (SVD)

When X has orthonormal columns, i.e. X T X = I, then everything
simplifies a lot. What if it does not? We can transform it such that it does!

Non-trivial fact: any matrix X can be written as
X =USV',

where U and V have orthonormal columns (left/right singular vectors)

and S is diagonal (with singular values).
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Geometry of SVD

Let us assume here that all the features and the response are centered (and

X does not contain the column of 1s).

Consider SVD of X = USV T,
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SVD is useful!

y=Hy=X(X'X)"'XTy =
=USV(VSU'USV')"lvSU Ty =
=USVI(vs?vT)"lvsu'Ty =
=USV'VS2VIVSU Ty =
=UU"y
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SVD is useful!

y=Hy=X(X'X)"'X'y=UU"y
B=X"X)"'XTy=vs Uy

Note: the formula 8 = (X X)X Ty is good for mathematical
analysis but terrible for computations. Never program your linear
regression solver like that :)

The lesson: strong correlations between features = small singular values
in X " X = possible numerical problems, estimated coefficients blowing

up, high estimation uncertainty.
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