Probabilistic model

So far in this course, 2 model referred to a parametric family of functions,

such as

f(x) = Bo + Br.

We will now discuss probabilistic (generative) models, such as

y:/80+/81$+6,

e~ N(0,0?),
where NV(0, 02) denotes a Gaussian distribution with mean 0 and
variance o2
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Probability theory recap




Discrete probability distributions

Probability distributions can be discrete or continuons.

A discrete random variable X is described by a probability mass function
(PMEF):

% @ 7
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Here X can take values x; with probabilities p;, with

pi>0, > pi=1
7
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Continuous probability distributions

A continuous random variable X is described by a probability density
function (PDE):

6>
2 S
t P
p(z) =0,
/ p(z)dx =1
R
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The mean and the variance

If a discrete random variable X takes values x; with probabilities p;, then
7

Var[X] = E[(X - E[X])?| = Y (2 - E[X])’p:

i
If a continuous random variable X is described by a PDF p(x), then

E[X]) = [ op(o)do,

VarlX] = E[(X ~ E[X])’] = / (z — E[X])%p(z)dz.
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Variance, covariance, and correlation

‘We defined
Var[X] = E[(X — E[X])?].

We can similarly define

Cov[X,Y] = E|(X - E[X])(Y - E[Y])].

Note that
Cov[X, X]| = Var[X].

If Cov[X,Y] = 0, then X and Y are uncorrelated. Reminder:

Cov|[X,Y
Corr[X,Y] = X, V] .
Var[X] Var[Y]
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Some properties of mean and variance

Some useful properties of the expected value:
E[laX] = aE[X]
E[X +Y] =E[X] + E[Y]
E[XY] # E[X]E[Y] (unlessindependent)

and of variance:

Var[aX] = a® Var[X]
Var[X + Y| # Var[X]| + Var[Y] (unless uncorrelated)
Var[X] = E[X?] — E[X]?
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Multivariate probability distributions

A random variable X can be multivariate (random vector):

X1
X
p(x) 20,
/ p(x)dx = 1.
RQ
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Multivariate probability distributions

If a continuous multivariate random variable X is described by a PDF
p(x), then

E[X] = / xp(x)dx.
The variance is now replaced by a covariance matrix:
Cov[X] = E[(X ~E[X])(X — E[X])T]
Its diagonal elements are variances of X;:
Cov[X]i = Var[X|]
while oft-diagonal elements are covariances of X; and X;:

COV[X]Z‘J' = COV[XZ‘, Xj].
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Gaussian distribution

Gaussian (normal) distribution A/ (i, 02) with mean  and variance o'2:
pla) = ——exp - oy M)Q}
oV 27 202
If 4 = 0 and 0 = 1, this is called standard normal distribution:
(@) 1 z?
p(r) = —exp [ — —}
V2T 2
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Multivariate Gaussian distribution

Multivariate Gaussian distribution A'(ge, 2) in R¥ with mean g and

covariance matrix >:
1

X) = ——ex —lx— Ty 1(x - .
p(x) CRRTE] p| 50— = (x - p)

If p = 0 and 3 = 1, this is also called standard multivariate normal

distribution: ) .
2
p(x) = exp [ - 5[xI7].
\/ (2m)F
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Back to the probabilistic

model for linear regression




Probabilistic model

Probabilistic model for regression:

y=Po+fr+e=8"x+e,
e~ N(0,0%).

J Fo*pﬁ‘

Note: this assumes uncorrelated noise (errors) and equal noise variance for

all points (homoscedasticity).
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Likelihood

For a given B and given x;,

1 AT )2
yNN(ﬂTXz‘,UQ):U\/%eXP[—@QiQX)]

Probability density to generate the entire training set { (x;, y;) } is

1 (yi — B x)?
o [ - €m0
S oV2m 20
If we re-interpret this as a function of B (and o2), then it is called the
likelihood.
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Maximum likelihood

Find 3 and o maximizing the likelihood:
1 (yi — B x)?
I R R

Product of exponentials is annoying to work with = take the logarithm to

obtain log-likelihood:

2l 21

%

=—— log 2770 ~ 5,2 Z ,BTx,

It is often convenient to think about minimizing the negative

log-likelihood.
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Maximum likelihood

Negative log-likelihood:

n 2 1 To\2
§log(27r0 )+T._22i:(yi_:3 X;)” =

_n 2 1 2
= 51055(2770' ) + @HY* XB*

Maximizing likelihood is equivalent to minimizing squared error!

Exercise: what is the maximum likelihood solution for o-2?
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Statistical properties of 8

B is an estimator of 3. It is a random variable that depends on the input
data. We are interested in the expected value and the (co)variance of this

estimator.

We assume X is fixed and 3 is fixed. The response vectory = X3 + € s

A A

random. We want to study E[3] and Cov[f] over €.
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B is an unbiased estimator

Theorem: E[3] = B, i.e. it is an unbiased estimator.

Proof:

E[(X'X)"'XTy]

(XTX)'XT(XB +€)]
(XTX)IXTXB] +E[(XTX)1XT¢]
+0=

E[B]

[ TR T
CRSNCC

Note: here we assumed that n > p and X has full rank, i.c. all singular

values are non-zero, i.e. (X" X) ™! exists.
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Covariance matrix of 8 and Gauss-Markov

Exercise: Cov[B] = o2(XTX) L.

Cov|f] describes uncertainty around fB. We see that small singular values

of X lead to large uncertainty.

Gauss-Markov theorem: 3 has the smallest variance among all unbiased

linear estimators. It is the best linear unbiased estimator (BLUE).

What does this mean exactly? That Varja B] < Var[a' 3] for any

~ A

vector a (or, equivalently, Cov[3] — Cov|[] is a positive semi-definite

matrix, i.e. all singular values are > 0).
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Is the best linear unbiased estimator

always the best estimator?
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Underfitting, overfitting,

and the bias—variance tradeoff




Polynomial regression

What if we model the relationship between y and  but include x2, 23,

etc. terms?

f(x) = Bo + iz + fax® + Baz®.

This is szz/l linear regression! What?! Yes.
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Underfitting and overfitting

F*F"‘F"‘l

N
W U

Underfitting Overfitting
Model too simple Model too flexible
High bias High variance
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Bias—variance tradeoff

@) = f@)*] + 0% =
=E[(f(x) - E[f(2)] + E[f(2)] - f(2))*] + 0* =

Bias? Variance

— Bias® + Variance + o2.

rrrrrrrrrrrrrrrr
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Intuition for bias and variance

Low vacianca. u?(c)L\ Jariahc2
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Overﬁtting and high variance demonstration

|[M=0 M=1 M=3 M=9
wy | 019 082 031 0.35
w} 127 799 23237
wy 2543 5321.83
wh 1737 4856831
w) -231639.30
w? 640042.26
wp -1061800.52
wi 1042400.18
w} -557682.99
wy 125201.43

Bishop, Pattern Recognition and Machine Learning
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Training and test error

P

<~ 2
== S < Biss

#of lvreJ-‘C'fbe
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