
Probabilistic model

So far in this course, a model referred to a parametric family of functions,
such as

f(x) = β0 + β1x.

Wewill now discuss probabilistic (generative) models, such as

y = β0 + β1x + ϵ,

ϵ ∼ N (0, σ2),

where N (0, σ2) denotes a Gaussian distribution with mean 0 and
variance σ2.
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Probability theory recap



Discrete probability distributions

Probability distributions can be discrete or continuous.

A discrete random variable X is described by a probability mass function
(PMF):

Here X can take values xi with probabilities pi, with

pi ≥ 0,
∑

i

pi = 1.
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Continuous probability distributions

A continuous random variable X is described by a probability density
function (PDF):

p(x) ≥ 0,∫
R

p(x)dx = 1.
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The mean and the variance

If a discrete random variable X takes values xi with probabilities pi, then

E[X] =
∑

i

xipi,

Var[X] = E
[
(X − E[X])2

]
=

∑
i

(xi − E[X])2pi.

If a continuous random variable X is described by a PDF p(x), then

E[X] =
∫

xp(x)dx,

Var[X] = E
[
(X − E[X])2

]
=

∫
(x − E[X])2p(x)dx.
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Variance, covariance, and correlation

We defined
Var[X] = E

[
(X − E[X])2

]
.

We can similarly define

Cov[X, Y ] = E
[
(X − E[X])(Y − E[Y ])

]
.

Note that
Cov[X, X] = Var[X].

If Cov[X, Y ] = 0, then X and Y are uncorrelated. Reminder:

Corr[X, Y ] = Cov[X, Y ]√
Var[X] Var[Y ]

.
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Some properties of mean and variance

Some useful properties of the expected value:

E[aX] = aE[X]
E[X + Y ] = E[X] + E[Y ]

E[XY ] ̸= E[X]E[Y ] (unless independent)

and of variance:

Var[aX] = a2 Var[X]
Var[X + Y ] ̸= Var[X] + Var[Y ] (unless uncorrelated)

Var[X] = E[X2] − E[X]2
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Multivariate probability distributions

A random variable X can bemultivariate (random vector):

p(x) ≥ 0,∫
R2

p(x)dx = 1.
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Multivariate probability distributions

If a continuous multivariate random variable X is described by a PDF
p(x), then

E[X] =
∫

xp(x)dx.

The variance is now replaced by a covariance matrix:

Cov[X] = E
[
(X − E[X])(X − E[X])⊤

]
.

Its diagonal elements are variances of Xi:

Cov[X]ii = Var[Xi]

while off-diagonal elements are covariances of Xi and Xj :

Cov[X]ij = Cov[Xi, Xj ].
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Gaussian distribution

Gaussian (normal) distribution N (µ, σ2) with mean µ and variance σ2:

p(x) = 1
σ

√
2π

exp
[

− (x − µ)2

2σ2

]
If µ = 0 and σ = 1, this is called standard normal distribution:

p(x) = 1√
2π

exp
[

− x2

2

]
.
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Multivariate Gaussian distribution

Multivariate Gaussian distribution N (µ, Σ) inRk with mean µ and
covariance matrix Σ:

p(x) = 1√
(2π)k det(Σ)

exp
[

− 1
2

(x − µ)⊤Σ−1(x − µ)
]
.

If µ = 0 and Σ = I, this is also called standardmultivariate normal
distribution:

p(x) = 1√
(2π)k

exp
[

− 1
2

∥x∥2
]
.
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Back to the probabilistic
model for linear regression



Probabilistic model

Probabilistic model for regression:

y = β0 + β1x + ϵ = β⊤x + ϵ,

ϵ ∼ N (0, σ2).

Note: this assumes uncorrelated noise (errors) and equal noise variance for
all points (homoscedasticity).
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Likelihood

For a given β and given xi,

y ∼ N (β⊤xi, σ2) = 1
σ

√
2π

exp
[

− (y − β⊤xi)2

2σ2

]
.

Probability density to generate the entire training set {(xi, yi)} is

∏
i

1
σ

√
2π

exp
[

− (yi − β⊤xi)2

2σ2

]
.

If we re-interpret this as a function of β (and σ2), then it is called the
likelihood.
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Maximum likelihood

Find β and σ2 maximizing the likelihood:∏
i

1
σ

√
2π

exp
[

− (yi − β⊤xi)2

2σ2

]
.

Product of exponentials is annoying to work with⇒ take the logarithm to
obtain log-likelihood:

∑
i

[
log

[ 1
σ

√
2π

]
+

[
− (yi − β⊤xi)2

2σ2

]]
=

= −n

2
log(2πσ2) − 1

2σ2

∑
i

(yi − β⊤xi)2.

It is often convenient to think about minimizing the negative
log-likelihood.
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Maximum likelihood

Negative log-likelihood:

n

2
log(2πσ2) + 1

2σ2

∑
i

(yi − β⊤xi)2 =

= n

2
log(2πσ2) + 1

2σ2 ∥y − Xβ∥2.

Maximizing likelihood is equivalent to minimizing squared error!

Exercise: what is the maximum likelihood solution for σ2?
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Statistical properties of β̂

β̂ is an estimator of β. It is a random variable that depends on the input
data. We are interested in the expected value and the (co)variance of this
estimator.

We assume X is fixed and β is fixed. The response vector y = Xβ + ϵ is
random. We want to study E[β̂] and Cov[β̂] over ϵ.
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β̂ is an unbiased estimator

Theorem: E[β̂] = β, i.e. it is an unbiased estimator.

Proof:

E[β̂] = E[(X⊤X)−1X⊤y]
= E[(X⊤X)−1X⊤(Xβ + ϵ)]
= E[(X⊤X)−1X⊤Xβ] + E[(X⊤X)−1X⊤ϵ]
= β + 0 =
= β.

Note: here we assumed that n > p and X has full rank, i.e. all singular
values are non-zero, i.e. (X⊤X)−1 exists.
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Covariance matrix of β̂ and Gauss-Markov

Exercise: Cov[β̂] = σ2(X⊤X)−1.

Cov[β̂] describes uncertainty around β̂. We see that small singular values
of X lead to large uncertainty.

Gauss-Markov theorem: β̂ has the smallest variance among all unbiased
linear estimators. It is the best linear unbiased estimator (BLUE).

What does this mean exactly? That Var[a⊤β̂] ≤ Var[a⊤β̃] for any
vector a (or, equivalently, Cov[β̃] − Cov[β̂] is a positive semi-definite
matrix, i.e. all singular values are ≥ 0).
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Is the best linear unbiased estimator
always the best estimator?

No.
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Underfitting, overfitting,
and the bias–variance tradeoff



Polynomial regression

What if we model the relationship between y and x but include x2, x3,
etc. terms?

f(x) = β0 + β1x + β2x2 + β3x3.

This is still linear regression! What?! Yes.
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Underfitting and overfitting

Underfitting
Model too simple

High bias

Overfitting
Model too flexible
High variance
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Bias–variance tradeoff
MSE = E

[(
y − f̂(x)

)2]
=

= E
[(

f(x) + ϵ − f̂(x)
)2]

=

= E
[(

f(x) − f̂(x)
)2]

+ σ2 =

= E
[(

f(x) − E[f̂(x)] + E[f̂(x)] − f̂(x)
)2]

+ σ2 =

=
(
f(x) − E[f̂(x)]

)2
+ E

[(
f̂(x) − E[f̂(x)]

)2]
+

+ 2
(
f(x) − E[f̂(x)]

)
E

[
f̂(x) − E[f̂(x)]

]
+ σ2 =

=
(
f(x) − E[f̂(x)]

)2

︸ ︷︷ ︸
Bias2

+E
[(

f̂(x) − E[f̂(x)]
)2]

︸ ︷︷ ︸
Variance

+σ2 =

= Bias2 + Variance + σ2.
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Intuition for bias and variance
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Overfitting and high variance demonstration

Bishop, Pattern Recognition andMachine Learning
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Training and test error
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