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Regularization

Idea: penalize large coefficients. (Occam’s razor!)

= Ly~ X8I + AR(8)

Here AR() is a penalty term and X is called regularization parameter.

Some common choices are (all convex):

R(B) = 161 = 35 rdge
R(B) = [|IB]l: = Z |Bil lasso
P
R(B) = M||Bl1 + 2| B3 elastic net
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Bias—variance tradeoff

Loss function: £ = 1|y — X8> + AR(8).
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Ridge regression




Ridge regression
Loss function: .
L= EHY —XB|” + AlB]%.

Gradient: 5
VL = —EXT(y — XB) + 2)B.

Gradient descent:
2
B B—nVL=B+n X (y—XB)—2\8 =

2
=(1-2n\) B+1-X"(y — XB).
N——— n
“weight decay”
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Analytic solution for ridge regression

Gradient is equal to zero at the minimum:

2 R R
—;XT(y —XpB)+208=0
X'XB+n\3=X"y
(XTX +nAD)B=XTy

B=X"X+n) Xy

This is an example of a shrinkage estimator.

One can prove that if X "X has full rank, then Aopt > 0 (Hoerl and
Kennard, 1970).
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Shrinkage in action

Ridge estimator: By = (XTX +nAI)"1XTy.

Geff

A
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A note on not penalizing the intercept

Loss function:

1
£ =y - XB|* + B

What happens with § when A — 00? Itis convenient if §; — ¥ and not
to 0. This will be the case if both X and y have been centered (and X does

not contain Xg). Otherwise we need to write explicitly

n p p
== (w 60—26%)2“25?-
s =1

=1

3\*—‘

Another note: there may be no % factor in some implementations.
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SVD perspective
Consider singular value decomposition X = Usv’.
We previously showed that in OLS regression
y=UU"y.
In ridge regression,

y=XB=XX"X+n\)"'XTy

hat matrix

=USVI(VS’VT +nAVVT)~lvsU 'y

= U diag {S?an}UTy.

Le. ridge regression stronger affects small singular values.
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Bayesian perspective

Previously we showed that B ors is the maximum likelihood solution of

y=B"x+e¢

e~ N(0,0%).
This treats 3 as fixed. What if we treat it as random and assume a prior
distribution B ~ N(0, 721)2..

It turns out that 8 with A = 02 /(n7?) is the mean of the posterior

distribution, i.e. it is a maximum a posteriori (MAP) estimator.
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Bayes theorem, prior, and posterior

Joint and conditional probabilities:
P(A,B)=P(A| B)P(B)=P(B|A)P(A).
= Bayes theorem:
P(A|B) =
Example:

P k ic) P i
P(pandemic | mask) = (mask | p al;jd(emmi) (pandemic) -
mas
B P(mask | pandemic) P(pandemic)

~ P(mask | pand.) P(pand.) + P(mask | =pand.) P(—pand.)
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Bayes theorem, prior, and posterior

P(mask | pandemic) P(pandemic)
P(mask)

P(pandemic | mask) =

P(mask | Halloween) P(Halloween)
P(mask)

P(Halloween | mask) =

P(mask | diving) P(diving)
P(mask)

P(diving | mask) =

So when there are many options, it is often enough to write

P(A| B) ~ P(B | A)P(A).
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Prior, posterior, and likelihood
For continuous random variables:
p(x |y) ~py | z)p(x).
In our case of a generative model:

p(params | data) ~ p(data | params) p(params) .
N—_———

posterior likelihood prior
Taking the logarithm:

log p(params | data) ~ log p(data | params) + log p(params) .

log-posterior log-likelihood log-prior
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Bayesian linear regression

Probabilistic model and prior:

y=Bx+e
e~ N(0,0?),
B ~ N(0,7°1).

Log-likelihood (last lecture):

n 2 1 2
—§log(27ra ) — @Hy—XﬂH :

Log-prior:
p 2 1 2
~log(2nr?) — 551817

EBERHARD KARLS
Dmitry Kobak | Machine LearningI | Regularization and cross-validation UNIVERSITAT
TUBINGEN



Bayesian linear regression

Hence negative log—posterior:

1 1 o?
— |y = X8> + — 20 2y = XA —_— 2
Sy = X8I+ 55 I81F ~ —lly - X8I+ 5 118

effective A

{3l

Rsterior

/ \L’.Lel»‘l\ooc(

—— —
H

~

=, N
#i

O map ML
es‘h Mk esh‘ Mk

> —— >
e SO

Exercise: product of two Gaussians is a Gaussian.
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Lasso regression




Lasso regression

1
L=y~ X8I + A8

No analytic solution. But one can show that solutions are sparse.

Ridge Lasso
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Lagrange multipliers

Theorem: minimizing a loss £(w) subject to constraints C'(w) = 0 is
equivalent to minimizing £(w) + AC(w) over w and A. Here \ is called

Lagrange multiplier.

The same is true for inequality constraints C'(w) < 0 (with some extra

conditions that I omit here for simplicity).

This means that the following two formulations are equivalent:

1
£=—lly = X8I+l
1
£=—ly—XB|* se. Bl <t

And the same is true for ridge regression with A|| 3]|3.
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Ridge vs. lasso

1
Ridge: L= —[ly = XB|* st. |15 <.

1
Lasso: L = El\y - XﬂHZ st [|B] < t.

Ipliz=t

Ridge Lasso
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Model selection




Bias—variance tradeoff

o gafé
Overg?Hté CX%
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Training, test, and validation sets

Split the dataset into:

* Training set: used for model fitting;

e Test set: used for model evaluation.

Note: there is a tradeoft between training and test set sizes. Rule of

thumb: ~90% training, ~10% test.

If we need to tune some hyper-parameters, e.g. A, it is more appropriate to

use three sets:

* Training set: used for model fitting;
* Validation set: used for hyper-parameter tuning;

e Test set: used for final model evaluation.
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Cross-validation

Often the dataset is not large enough for a reliable training/test split.

Then one could use cross-validation (CV):

1w TQ5+
a4
— 24 fold
 Smmm—— AT}

K -fold cross-validation. n-fold CV is called leave-one-out CV (LOOCYV).
Rule of thumb: K = 10.

Note that cross-validation measures the performance not of a given

model, but of a model building procedure.

If you need a final model (for production or for inspection), then

afterwards fit the model using the chosen A on all of the available data.
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Nested cross-validation

What if we need training, validation, and test? Nested cross-validation!

* Outer loop: puts aside a test set.
* Inner loop: puts aside a validation test.
e After each inner loop: fit the model with chosen A on all ‘inner’ data.

Test
CC——v@

’I'rq?n‘mg Val.
::I‘ . &Imer [oor
[ eos— |

Outer loo'?

4 =)
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Nested cross-validation

Test
C—vD

“Tramiw Val.

——m
0 | Juner lop

(. o —

Outer loo'?

="

If you need a final model (for production or for inspection), then fit the
model using the “inner loop” on the entire dataset.

Exercise: if you use K = 10 for the outer loop, K = 5 for the inner loop,

and 100 values of A as your grid search, how many models will be built?
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Beyond the interpolation
threshold




Back to polynomial regression

s

If p > n, the regression problem is undertermined: there are infinitely

many (3 values yielding zero loss £L(8) = 0.
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Minimum-norm solution

Using X = USV ', we previously obtained BOLS =VS-UTy.

This formula still makes sense if p > n (now Sisn X n, not p X p)and

yields the minimum-norm B among all possible ones satisfying £(8) = 0.
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Implicit regularization

Here is what can happen if we use the minimum-norm solution beyond
the interpolation threshold:

<
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Implicit regularization.
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