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Regularization

Idea: penalize large coefficients. (Occam’s razor!)

L = 1
n
∥y−Xβ∥2 + λR(β)

Here λR(β) is a penalty term and λ is called regularization parameter.

Some common choices are (all convex):

R(β) = ∥β∥2 =
∑

i

β2
i ridge

R(β) = ∥β∥1 =
∑

i

|βi| lasso

R(β) = λ1∥β∥1 + λ2∥β∥22 elastic net
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Bias–variance tradeoff

Loss function: L = 1
n∥y−Xβ∥2 + λR(β).
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Ridge regression



Ridge regression

Loss function:
L = 1

n
∥y−Xβ∥2 + λ∥β∥2.

Gradient:
∇L = − 2

n
X⊤(y−Xβ) + 2λβ.

Gradient descent:

β ← β − η∇L = β + η
2
n

X⊤(y−Xβ)− 2ηλβ =

= (1− 2ηλ)︸ ︷︷ ︸
“weight decay”

β + η
2
n

X⊤(y−Xβ).
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Analytic solution for ridge regression

Gradient is equal to zero at the minimum:

− 2
n

X⊤(y−Xβ̂) + 2λβ̂ = 0

X⊤Xβ̂ + nλβ̂ = X⊤y
(X⊤X + nλI)β̂ = X⊤y

β̂ = (X⊤X + nλI)−1X⊤y

This is an example of a shrinkage estimator.

One can prove that if X⊤X has full rank, then λopt > 0 (Hoerl and
Kennard, 1970).
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Shrinkage in action

Ridge estimator: β̂λ = (X⊤X + nλI)−1X⊤y.

Dmitry Kobak | Machine Learning I | Regularization and cross-validation



A note on not penalizing the intercept

Loss function:
L = 1

n
∥y−Xβ∥2 + λ∥β∥2

What happens with ŷ when λ→∞? It is convenient if ŷi → ȳ and not
to 0. This will be the case if bothX and y have been centered (andX does
not contain x0). Otherwise we need to write explicitly

L = 1
n

n∑
i=1

(
yi − β0 −

p∑
j=1

βjXij

)2
+ λ

p∑
j=1

β2
j .

Another note: there may be no 1
n factor in some implementations.
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SVD perspective

Consider singular value decomposition X = USV⊤.

We previously showed that in OLS regression

ŷ = UU⊤y.

In ridge regression,

ŷ = Xβ̂ = X(X⊤X + nλI)−1X︸ ︷︷ ︸
hat matrix

⊤y

= USV⊤(VS2V⊤ + nλVV⊤)−1VSU⊤y

= U diag
{ s2

i

s2
i + nλ

}
U⊤y.

I.e. ridge regression stronger affects small singular values.
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Bayesian perspective

Previously we showed that β̂OLS is the maximum likelihood solution of

y = β⊤x + ϵ,

ϵ ∼ N (0, σ2).

This treats β as fixed. What if we treat it as random and assume a prior
distribution β ∼ N (0, τ2I)?..

It turns out that β̂λ with λ = σ2/(nτ2) is the mean of the posterior
distribution, i.e. it is amaximum a posteriori (MAP) estimator.
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Bayes theorem, prior, and posterior

Joint and conditional probabilities:

P (A, B) = P (A | B)P (B) = P (B | A)P (A).

⇒ Bayes theorem:

P (A | B) = P (B | A)P (A)
P (B)

.

Example:

P (pandemic | mask) = P (mask | pandemic)P (pandemic)
P (mask)

=

= P (mask | pandemic)P (pandemic)
P (mask | pand.)P (pand.) + P (mask | ¬pand.)P (¬pand.)
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Bayes theorem, prior, and posterior

P (pandemic | mask) = P (mask | pandemic)P (pandemic)
P (mask)

P (Halloween | mask) = P (mask | Halloween)P (Halloween)
P (mask)

P (diving | mask) = P (mask | diving)P (diving)
P (mask)

So when there are many options, it is often enough to write

P (A | B) ∼ P (B | A)P (A).
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Prior, posterior, and likelihood

For continuous random variables:

p(x | y) ∼ p(y | x)p(x).

In our case of a generative model:

p(params | data)︸ ︷︷ ︸
posterior

∼ p(data | params)︸ ︷︷ ︸
likelihood

p(params)︸ ︷︷ ︸
prior

.

Taking the logarithm:

log p(params | data)︸ ︷︷ ︸
log-posterior

∼ log p(data | params)︸ ︷︷ ︸
log-likelihood

+ log p(params)︸ ︷︷ ︸
log-prior

.
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Bayesian linear regression

Probabilistic model and prior:

y = β⊤x + ϵ,

ϵ ∼ N (0, σ2),
β ∼ N (0, τ2I).

Log-likelihood (last lecture):

−n

2
log(2πσ2)− 1

2σ2 ∥y−Xβ∥2.

Log-prior:

−p

2
log(2πτ2)− 1

2τ2 ∥β∥
2.
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Bayesian linear regression

Hence negative log-posterior:

. . . + 1
2σ2 ∥y−Xβ∥2 + 1

2τ2 ∥β∥
2 ∼ 1

n
∥y−Xβ∥2 + σ2

nτ2︸︷︷︸
effective λ

∥β∥2.

Exercise: product of two Gaussians is a Gaussian.
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Lasso regression



Lasso regression

L = 1
n
∥y−Xβ∥2 + λ∥β∥1.

No analytic solution. But one can show that solutions are sparse.

Ridge Lasso
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Lagrange multipliers

Theorem: minimizing a lossL(w) subject to constraints C(w) = 0 is
equivalent to minimizingL(w) + λC(w) over w and λ. Here λ is called
Lagrange multiplier.

The same is true for inequality constraints C(w) ≤ 0 (with some extra
conditions that I omit here for simplicity).

This means that the following two formulations are equivalent:

L = 1
n
∥y−Xβ∥2 + λ∥β∥1,

L = 1
n
∥y−Xβ∥2 s.t. ∥β∥1 ≤ t.

And the same is true for ridge regression with λ∥β∥22.
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Ridge vs. lasso

Ridge: L = 1
n
∥y−Xβ∥2 s.t. ∥β∥22 ≤ t.

Lasso: L = 1
n
∥y−Xβ∥2 s.t. ∥β∥1 ≤ t.

Ridge Lasso
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Model selection



Bias–variance tradeoff
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Training, test, and validation sets

Split the dataset into:

• Training set: used for model fitting;
• Test set: used for model evaluation.

Note: there is a tradeoff between training and test set sizes. Rule of
thumb: ∼90% training,∼10% test.

If we need to tune some hyper-parameters, e.g. λ, it is more appropriate to
use three sets:

• Training set: used for model fitting;
• Validation set: used for hyper-parameter tuning;
• Test set: used for final model evaluation.
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Cross-validation

Often the dataset is not large enough for a reliable training/test split.
Then one could use cross-validation (CV):

K-fold cross-validation. n-fold CV is called leave-one-out CV (LOOCV).
Rule of thumb: K = 10.

Note that cross-validation measures the performance not of a given
model, but of a model building procedure.

If you need a final model (for production or for inspection), then
afterwards fit the model using the chosen λ on all of the available data.
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Nested cross-validation

What if we need training, validation, and test? Nested cross-validation!

• Outer loop: puts aside a test set.

• Inner loop: puts aside a validation test.

• After each inner loop: fit the model with chosen λ on all ‘inner’ data.
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Nested cross-validation

If you need a final model (for production or for inspection), then fit the
model using the “inner loop” on the entire dataset.

Exercise: if you use K = 10 for the outer loop, K = 5 for the inner loop,
and 100 values of λ as your grid search, howmany models will be built?
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Beyond the interpolation
threshold



Back to polynomial regression

If p > n, the regression problem is undertermined: there are infinitely
many β values yielding zero lossL(β) = 0.

Dmitry Kobak | Machine Learning I | Regularization and cross-validation



Minimum-norm solution

Using X = USV⊤, we previously obtained β̂OLS = VS−1U⊤y.

This formula still makes sense if p > n (now S is n× n, not p× p) and
yields the minimum-norm β̂ among all possible ones satisfyingL(β) = 0.
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Implicit regularization

Here is what can happen if we use the minimum-norm solution beyond
the interpolation threshold:

Implicit regularization.
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