
Classification problem

Two kinds of supervised learning problems: regression and classification.

In classification, each sample is assigned to one of the several classes, i.e.
the response variable y is categorical.

Classification problems can be binary ormultinomial (multiclass).

It is convenient to denote y ∈ {0, 1} for binary classification and
y ∈ {0, 1, . . . , K − 1} for multiclass classification with K classes.

We will deal the binary classification first.
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Why not use linear regression?

Wewant the prediction ŷ to be in [0, 1].
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Predicting probabilities

Wewant ŷ ∈ [0, 1] and not in {0, 1} because we will interpret it as a
probability P (y = 1). Predicting probabilities is arguably more useful
and meaningful than predicting class membership.

Logistic (sigmoid) function:

g(x) = 1
1 + e−x

.
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Logistic regression parameters

For a single predictor x:

h(x) = g(β0 + β1x) = g
(
β1(x − a)

)
= 1

1 + e−β1(x−a) .

For multiple predictors:

h(x) = g(β⊤x) = 1
1 + e−β⊤x

.
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Linear classifier

Probability (and/or class) are predicted based on a linear function of the
predictors.

Decision boundary is linear.
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Linear classifier with polynomial features

Adding more features to the model (e.g. x2
1, x2

2, x1x2, etc.) can make a
problem solvable by a linear classifier.
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Loss function

We have
ŷ = P (y = 1) = h(x) = 1

1 + e−β⊤x
.

Can we still use the mean squared error (MSE) loss function?

L = 1
n

∑
i

(yi − ŷi)2

It is not ideal for probabilistic predictions: ŷi = 0.99 and ŷi = 0.9999
have similar loss when yi = 0.

Recall that MSE followed from the assumption of Gaussian noise using
maximum likelihood (Lecture 3). What is the noise here?
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Maximum likelihood

Bernoulli random variable: Y = 1 with probability p and Y = 0 with
probability 1 − p.

The likelihood: ∏
i|yi=1

h(xi) ·
∏

i|yi=0

(
1 − h(xi)

)
.

The negative log-likelihood:

L = −
∑

i|yi=1
log h(xi) −

∑
i|yi=0

log
(
1 − h(xi)

)
= −

∑
i

[
yi log h(xi) + (1 − yi) log

(
1 − h(xi)

)]
.
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Logistic regression

The loss function is

L = −
∑

i

[
yi log h(xi) + (1 − yi) log

(
1 − h(xi)

)]
where

h(x) = 1
1 + e−β⊤x

.

This is not a linear model! It is a generalized linear model (GLM).

Good news: this loss function is convex. Bad news: the minimum is not
available in closed form.

Usually logistic regression is optimized using 2nd order methods
(Newton’s method), but for simplicity we will consider gradient descent.
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Gradient descent for logistic regression

Exercise: g′(x) = g(x)
(
1 − g(x)

)
.

From here we get:

∇ log h(x) = ∇ log g(β⊤x) =
(
1 − h(x)

)
x,

∇ log
(
1 − h(x)

)
= ∇ log

(
1 − g(β⊤x)

)
= −h(x)x.

And finally:

∇L = −∇
∑

i

[
yi log h(xi) + (1 − yi) log

(
1 − h(xi)

)]
= −

∑
i

(
yi − h(xi)

)
xi = −X⊤(y − ŷ).

Amazingly, this formula is identical to ∇L in linear regression (Lecture 2),
up to a constant factor. This hints at how useful the GLM framework is.
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Overfitting and regularization

Overfitting, bias–variance tradeoff, regularization (ridge/lasso) — all these
concepts still apply.
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Perfect separation

In linear regression in the interpolation regime, training loss is zero and
there are many β̂ solutions (Lecture 4). Minimum-norm solution can in
some cases perform well.

In logistic regression in the perfect separation regime, training loss
converges to zero but β̂ diverges to infinity. It may still in some cases
perform well in terms of class predictions, but probabilities may be
miscalibrated (all ŷ → 0 or 1).
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From probabilities to binary predictions

Logistic regression is designed to give accurate probabilistic predictions. A
cutoff (threshold) is needed to convert them into binary predictions.

One may want to choose a cutoff
to maximize the accuracy. But it
may also be that errors in certain direction
(0 or 1) are preferable. One should think
about true positive vs. false positive rates.
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A note on accuracy and class imbalance

Accuracy can be very misleading if the classes are unbalanced.

But logistic regression still works fine. (Assuming that the class imbalance
is the same in the training and in the test data.)
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Multinomial logistic regression

One way to generalize logistic regression to multinomial case is via a
softmax function.

Each class i = {0, 1, . . . , K − 1} gets its own βi. Then

P (y = k) = eβ
⊤
k x∑

i eβ
⊤
i x

.

Note that adding any vectorψ to all βi vectors will not change the
probabilities. So we can e.g. constrain βK−1 = 0. For a binary problem
this becomes equivalent to logistic regression.
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