
Linear classification algorithms

There are several different approaches to linear classification.

The chapter LinearMethods for Classification in The Elements of
Statistical Learning by Hastie et al. discusses three groups of algorithms:
(1) logistic regression, (2) linear discrimininant analysis, and (3) separating
hyperplanes (perceptron and linear support vector machine).

In logistic regression, we modeled P (class | data).

In discriminant analysis, we will model P (data | class).

One can also directly optimize a linear decision boundary, without any
probabilistic model. We will not cover such methods in this course.
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P (class | x) vs. P (x | class)

What we want, is P (class | x). This is what logistic regression directly
estimates.

Alternatively, we can assume some model for P (x | class) and some prior
P (class). Then, using Bayes rule, we can get P (class | x):

P (class = k | x) = P (x | class = k)P (class = k)∑
i P (x | class = i)P (class = i)

P (class = k | x) ∼ fk(x)πk

Recall that linear regression models P (y | x). A question to think about: would
it make sense to assume a model for P (x | y) together with a prior P (y)?..
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Gaussian densities

Suppose that fk(x) are all multivariate Gaussians:

fk(x) = 1√
(2π)p det Σk

exp
[

− 1
2

(x − µk)⊤Σ−1
k (x − µk)

]
.
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Quadratic discriminant analysis (QDA)

Let us consider a binary classification problem with π1 = π2 = 1
2 and

fk(x) = 1√
(2π)p det Σk

exp
[

− 1
2

(x − µk)⊤Σ−1
k (x − µk)

]
.

Then the decision boundary is given by P (class 1 | x) = P (class 2 | x):

������−p

2
log(2π) − 1

2
log det Σ1 − 1

2
(x − µ1)⊤Σ−1

1 (x − µ1) =

������−p

2
log(2π) − 1

2
log det Σ2 − 1

2
(x − µ2)⊤Σ−1

2 (x − µ2).

This is called quadratic discriminant analysis (QDA).
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Quadratic discriminant analysis (QDA)

QDA decision boundary:

log det Σ1 + (x − µ1)⊤Σ−1
1 (x − µ1) =

log det Σ2 + (x − µ2)⊤Σ−1
2 (x − µ2).
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Linear discriminant analysis (LDA)

QDA decision boundary:

log det Σ1 + (x − µ1)⊤Σ−1
1 (x − µ1) =

log det Σ2 + (x − µ2)⊤Σ−1
2 (x − µ2).

Let us assume that Σ1 = Σ2 = Σ. Then:

(x − µ1)⊤Σ−1(x − µ1) = (x − µ2)⊤Σ−1(x − µ2)
2x⊤Σ−1(µ1 − µ2) = µ⊤

1 Σ−1µ1 − µ⊤
2 Σ−1µ2︸ ︷︷ ︸

const

x⊤Σ−1(µ1 − µ2) = const

This is linear projection of x onto the Σ−1(µ1 − µ2) direction.
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Linear discriminant analysis (LDA)

LDA decision boundary:

x⊤Σ−1(µ1 − µ2) = 1
2

(
µ⊤

1 Σ−1µ1 − µ⊤
2 Σ−1µ2

)
.
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The role of Σ−1 in LDA

Why does LDA use projection on Σ−1(µ1 − µ2) and not simply on
µ1 − µ2?

Dmitry Kobak | Machine Learning I | Linear discriminant analysis



Nearest centroid classifier

Under additional assumption that the covariance matrix is spherical,
Σ = σ2I, LDA reduces to the nearest centroid classifier:

But note that the nearest centroid classifier is non-probabilistic, whereas
‘spherical LDA’ makes probabilistic predictions.
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Estimating Gaussian parameters

For QDA / LDA / nearest centroid, we need to know πk, µk, Σk.They
can be estimated from the training data using standard formulas:

µ̂k = 1
nk

∑
i∈Ck

xi,

Σ̂k = 1
nk − 1

∑
i∈Ck

(xi − µk)(xi − µk)⊤,

π̂k = nk

n
.

For LDA, one uses the pooled covariance estimator:

Σ̂ = 1
n − K

K∑
k=1

∑
i∈Ck

(xi − µk)(xi − µk)⊤.
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Estimating Gaussian parameters

Σ̂ = 1
n − K

K∑
k=1

∑
i∈Ck

(xi − µk)(xi − µk)⊤.
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Overfitting and ridge regularization in LDA

The Σ−1 factor in Σ−1(µ1 − µ2) may cause high-variance overfitting
problems unless n ≫ p.

Recall that in linear regression, ridge regularization replaces (X⊤X)−1

with (X⊤X + λI)−1. Similarly, we can construct regularized LDA by
replacing Σ−1 with (Σ + λI)−1.

This can be alternatively written as
(
(1 − λ)Σ + λI

)−1: interpolating
between LDA and nearest centroid classifier.

Similar interpolation can be used between QDA and LDA:(
(1 − λ)Σk + λΣ

)−1.
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LDA/QDA flavours

Other choices are possible by constraining Σk in various ways:

Covariance matrices Separate Shared

Full QDA LDA
Diagonal Naive Bayes Diagonal LDA
Spherical ‘Spherical QDA’ Nearest centroid

Exercise: for a binary classification in dimensionality p, howmany
parameters does each of these covariance models use?

Note: one can interpolate between any of them using λ.
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Diagonal QDA aka Gaussian Naive Bayes

Here correlations between features are ignored and each feature is treated
independently:

fk(x) =
p∏

j=1
fkj(xj).

Exercise: if fk ∼ N (µk, Σk) with diagonal
Σk = diag{σ2

k1, σ2
k2, . . . , σ2

kp}, then fkj ∼ N (µkj , σ2
kj).
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Fisher’s discriminant analysis*

Fisher (1936) derived LDA via a different route. He posed the following
problem: find a linear projection that would maximize the ratio of the
between-class ‘spread’ to the within-class ‘spread’.

Let the means and the variances of each class after projection be m1 and
m2, and s2

1/(n1 − 1) and s2
2/(n2 − 1). Then the ratio can be written as

R = (m1 − m2)2

s2
1 + s2

2
∼

(
w⊤(µ1 − µ2)

)2

w⊤Σw .

Define v = Σ1/2w. Then

R =
(
v⊤Σ−1/2(µ1 − µ2)

)2

v⊤v ,

so v̂ ∼ Σ−1/2(µ1 − µ2) and hence ŵ ∼ Σ−1(µ1 − µ2).
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Fisher’s discriminant analysis
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LDA vs. logistic regression

LDA and logistic regression are both very popular. When appropriately
regularized, they often perform similarly well in practice.

If the data are truly Gaussian, LDA is optimal.

But logistic regression can perform better when the data are non-Gaussian
(and can be more robust to outliers).
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Nearest centroid vs. k nearest neighbours

Instead of using the
nearest centroid for classification,
one can use the majority vote
among the k nearest neighbours.

The value of k controls
the bias–variance tradeoff: low
bias with k = 1, low variance with
k ≫ 1.

This is a non-parametricmethod.The entire training set needs to be
available at test time. But it can be given a probabilistic interpretation as a
non-parametric estimate of p(x | class = i) ∼ ci/ni.
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