
Neural networks and deep learning

Deep Learning by Goodfellow et al. defines ‘deep
learning’ as algorithms enabling “the computer
to learn complicated concepts by building them
out of simpler ones”.

This is implemented using neural networks that
consist of hierarchically organized simple processing
units, neurons.

This field had a series of huge successes starting in ∼2012: classifying
images, generating images, playing Go, writing text, folding proteins, etc.
Known together as the ‘deep learning revolution’.

This lecture is about feed-forward neural networks for image classification.
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We have already spent one entire lecture talking about
a neural network classifier!
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Logistic regression revisited

The loss function of logistic regression:

L = −
∑

i

[
yi log h(xi) + (1 − yi) log

(
1 − h(xi)

)]
where

h(x) = 1
1 + e−β⊤x

= 1
1 + e−W1x .

Here coefficients are called weights.
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A hidden layer

Logistic regression is a linear network that has an input layer and an output
layer. We now add a hidden layer:

L = −
∑

i

[
yi log h(xi) + (1 − yi) log

(
1 − h(xi)

)]
Linear: h(x) = 1

1 + e−W2W1x Nonlinear:
1

1 + e−W2ϕ(W1x)
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Activation function

Wewant to use some nonlinear activation function ϕ that is easy to work
with. The most common choice:

ϕ(x) = max(0, x).

Such neurons are called rectified linear units (ReLU).
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Universal approximation theorems

Any continuous function f can be arbitrarily well approximated by a
neural network with one hidden layer (for any given non-polynomial
activation function ϕ, such as e.g. logistic or rectifier):

f(x) ≈ W2ϕ(W1x)
f ≈ W2 ◦ ϕ ◦ W1

However, this has little practical relevance because the hidden layer may
need to be prohibitively large and/or the training may be prohibitively
difficult (note that the loss function is not convex!).
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Going deeper

What we had above was a shallow network. Here is a deeper one:

L = −
∑

i

[
yi log h(xi) + (1 − yi) log

(
1 − h(xi)

)]
h(x) = 1

1 + e
−W4ϕ

(
W3ϕ

(
W2ϕ(W1x)

))
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Gradient

Logistic regression gradient (see Lecture 5):

∇L = −
∑ (

yi − h(xi)
)
∇(β⊤xi) = −

∑ (
yi − h(xi)

)
xi.

The gradient for the deep network:

∇L = −
∑ (

yi − h(xi)
)
∇

[
W4ϕ

(
W3ϕ

(
W2ϕ(W1xi)

))]
.

Let us write this term down with indices:

z =
∑

a

W4aϕ
[ ∑

b

W3abϕ
( ∑

c

W2bcϕ
( ∑

d

W1cdxid

))]
.

Nowwe need to use the chain rule: if h(x) = f(g(x)), then
h′(x) = f ′(g(x))g′(x).
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Chain rule and backpropagation

z =
∑

a

W4aϕ
[ ∑

b

W3abϕ
( ∑

c

W2bcϕ
( ∑

d

W1cdxid

))]
∂z

∂W4a
= ϕ

[ ∑
b

W3abϕ
( ∑

c

W2bcϕ
( ∑

d

W1cdxid

))]
∂z

∂W3ab
= W4a

∂ϕ(. . .)
∂(. . .)

ϕ
( ∑

c

W2bcϕ
( ∑

d

W1cdxid

))
∂z

∂W2bc
=

∑
a

W4a
∂ϕ(. . .)
∂(. . .)

W3ab
∂ϕ(. . .)
∂(. . .)

ϕ
( ∑

d

W1cdxid

)
∂z

∂W1cd
=

∑
a

W4a
∂ϕ(. . .)
∂(. . .)

∑
b

W3ab
∂ϕ(. . .)
∂(. . .)

W2bc
∂ϕ(. . .)
∂(. . .)

xid

Backpropagation allows efficient computation of all these derivatives using
a backward pass through the network.
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Stochastic gradient descent

Using backpropagation, we can compute the gradient (partial derivatives
with respect to each weight) and use gradient descent.

Two notes:

1. In practice, gradient descent algorithm is often used with some
modifications: momentum, adaptive learning rates (e.g. Adam), etc.

2. Gradient descent requires summation over all training samples at
each step. In practice, training data are split into batches and are
processed one ny one: stochastic gradient descent (SGD). One sweep
through the entire training dataset is called an epoch.

Dmitry Kobak | Machine Learning I | Neural networks and deep learning



Multiclass classification

If there are K classes, then the last softmax layer has K output neurons:

P (y = k) = ezk∑
i ezi

,

where zi are pre-nonlinearity activations: z = WLϕ
(
WL−1ϕ(. . .)

)
.

The cross-entropy loss function can be written as

L = −
n∑

i=1

K∑
k=1

Yik log P (yi = k),

where Yik = 1 if yi = k and 0 otherwise.
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Convolutional neural networks

Convolutional neural networks (CNN) use weight sharing to build
translation invariance into the model.
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Convolutional neural networks:

The input image has three input channels:
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Convolutional neural networks

Several feature maps:
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Convolutional neural networks

Standard CNN architecture:
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What do CNNs learn?

First layer:

Krizhevsky et al. 2012
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What do CNNs learn?

Hidden layer:

Olah et al. 2017
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Historical remarks

Deep neural networks, CNNs, and backpropagation were invented in the
1960/1970s. Why did it take until 2010s for them to become popular?

• Computing power (GPUs);

• Large labeled datasets (such as ImageNet);

• Optimization/initialization/normalization/regularization tricks.

It is obvious that one can take a network and run gradient descent. What
is not obvious, is (a) whether it will avoid getting stuck in a useless local
minimum, and (b) whether it will not hopelessly overfit.
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Overfitting and regularization

Ridge (L2) regularization: λ∥Wl∥2 on each layer l. This is also called
weight decay (see Lecture 4).

Another method is called early stopping:

Remark: for linear regression one can show that early stopping penalizes
smaller singular values stronger, as does the ridge penalty.
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Overparametrization

Modern neural networks are typically used in the overparametrized
regime, i.e. they can perfectly or near-perfectly overfit training data. This
can be shown by training them using randomly shuffled labels: they can
still achieve zero training loss.

At the same time, generalization performance can be high: ‘benign’
overfitting due to implicit regularization.

Sometimes one sees overfitting in the test loss but not in the test accuracy:
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Overparametrization

When model complexity is gradually increased, the optimal performance
is often achieved far beyond the interpolation threshold:
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