
Boosting and bagging

• Boosting builds complex models out of simple ones
(combats high bias).

• Bagging averages complex models to simplify them
(combats high variance).

Dmitry Kobak | Machine Learning I | Boosting, bagging, and random forests

Classification trees

Both boosting and bagging often use binary classification trees:

The tree is built in a greedy fashion, iteratively looking for best splits.

The number of splits regulates model complexity, from a ‘stump’ (a single
split) to a fully grown tree (100% training accuracy).

Note: trees can be used for regression as well (regression trees).

Dmitry Kobak | Machine Learning I | Boosting, bagging, and random forests

Boosting

Boosting repeatedly applies a weak binary classifier G : Rp → {−1, 1} to
the training set, modifying sample weights:

• Start with equal sample weights wi = 1/n.
• For steps m = 1 . . . M :

• Fit a classifier Gm to the training data using weights wi.
• Compute its weight αm given its performance.
• Update the sample weights wi to increase the importance of
misclassified samples.

• Output G(x) = sign
(∑

m αmGm(x)
)

.

Dmitry Kobak | Machine Learning I | Boosting, bagging, and random forests

Boosting example

One can use binary tree stumps as the weak classifier.

Dmitry Kobak | Machine Learning I | Boosting, bagging, and random forests

AdaBoost

For each classifier Gm, define the weighted error rate as

errm =
∑

wiI(yi ̸= Gm(xi))∑
i wi

.

AdaBoost (Freund & Shapire, 1997) sets αm = log[(1− errm)/errm]
and updates the weights as wi ← wi exp[αmI(yi ̸= Gm(xi))].

These formulas look pretty mysterious. Turns out (Friedman et al., 2000),
that AdaBoost performs greedy optimization of the exponential loss
functionL =

∑
i exp(−yiG(xi)) using an additive model

G(xi) =
∑

m αmGm(x).

Dmitry Kobak | Machine Learning I | Boosting, bagging, and random forests

AdaBoost and the exponential loss

Using the exponential loss function and greedy optimization, on step m

one optimizes ∑
i

exp[−yi
(
Gm−1(xi) + αmGm(xi)

)
],

where Gm−1 denotes the model built on previous steps. This can be
rewritten as ∑

i

wi exp[−αmyiGm(xi)].

From here one can show that Gm should minimize the weighted error
rate, and derive AdaBoost’s formulas for αm and for wi updates.

Note that this machinery works thanks to the exponential loss function.
Gradient boosting is a powerful generalization to other loss functions.

Dmitry Kobak | Machine Learning I | Boosting, bagging, and random forests

Some comments on AdaBoost

• It is often considered one of the best off-the-shelf classifiers.

• Number of boosting iterations controls model complexity.

• AdaBoost can overfit in principle, but often overfits very slowly or
does not overfit at all!

• Boosting long enough will increase the training accuracy to 100%.

• Exponential loss can keep decreasing even after the training accuracy
is at 100% (and test accuracy can also keep increasing).

Dmitry Kobak | Machine Learning I | Boosting, bagging, and random forests

Bagging

Bagging (stands for ‘boostrap aggregation’) refers to model averaging of
models constructed on bootstrapped datasets:

G(x) = 1
B

B∑
b=1

Gb(x),

where each Gb is constructed on a bootstrapped dataset of size n.

Bootstrapping: randomly, with repetitions, select n samples out of n.
This results in leaving out∼1/e samples.

Bagging is applied to models with low bias and high variance. After
averaging, bias remains low but variance decreases.

If different models were independent, then the variance would decrease to
0 when B →∞. But in reality the models are not independent.

Dmitry Kobak | Machine Learning I | Boosting, bagging, and random forests

Random Forests

Random Forests (Breiman, 2001) use bagging of fully grown trees, but
with additional randomness introduced in order to decrease the
dependence:

• for each split, randomly select m≪ p variables as candidates for
splitting. By default, m = √p.

Note that here — unlike in boosting— the number of trees (B) does not
regulate model complexity.

Dmitry Kobak | Machine Learning I | Boosting, bagging, and random forests

Some comments on Random Forests

• They are also often considered one of the best off-the-shelf classifiers.
• A random forest often performs similarly to AdaBoost / gradient
boosting.

• It requires very little tuning.
• It shows 100% training set accuracy.
• It does not need cross-validation or a test set: one can test the
performance on the ‘out-of-bag’ samples. For each sample i, average
trees constructed on boostrapped datasets that did not include i.

• It allows easy assessment of variable importance: when checking the
performance on the out-of-bag samples, randomly permute each
variable one after another. The average decrease in accuracy
quantifies each variable’s importance.

Dmitry Kobak | Machine Learning I | Boosting, bagging, and random forests

AdaBoost and Random Forests

Both are interpolating classifiers, i.e. they have perfect training accuracy.

See e.g. Wyner et al. (2017). Also see Lectures 4 and 7.

Dmitry Kobak | Machine Learning I | Boosting, bagging, and random forests

