Supervised and unsupervised learning

Supervised learning: input data — output data.

Unsupervised learning: input data and nothing else.
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Clustering problem
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This problem is very hard to formalize. What exactly is a c/uster? How to
determine the number of clusters in the data? Are the data clustered at all?

How to compare two clustering algorithms?

EBERHARD KARLS
Dmitry Kobak | Machine LearningI | Clustering and expectation-maximization UNIVERSITAT
TUBINGEN



K -means clustering

K -means clustering aims to cluster the dataset {x; } into K clusters { Sk},

each represented by a vector p1,, to minimize the following loss function:

K
L= lxi— il

k=11ieSy

Alternatively, this can be written as

||MN

n
Z riellxi — pgll,

where 7, = 1if x; € S}, and 0 otherwise.
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K -means loss function
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Minimizing the K -means loss

K n
L= > lxi—ml® =D ranlxi — pel®

k icSy h=1i=1
Not analytically solvable. Not convex. Gradient descent can be messy.

Alternative approach (Lloyd’s algorithm): iteratively optimize over 7,

and over ..
* For fixed py,: assign each point x; to the nearest cluster center.

i € Syifk = argmin [|x; — ujHQ.

J
* For fixed 7;1:
1
By = W Z X
k 1€SE
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[lustration of the Lloyd’s algorithm

Bishop, Pattern Recognition and Machine Learning
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Local minima
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https://stats.stackexchange.com/questions/133656
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 https://stats.stackexchange.com/questions/133656

Drawbacks of K -means
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Gaussian mixture model (GMM)

Gaussian mixture:

K
p(x) = > mN(x | py, Zi).

k=1

Intuitively, we could use the same iterative approach as in the Lloyd’s

algorithm for K-means:

* Assign each point to the ‘nearest’ Gaussian component (cluster).

Here ‘nearest’ means ‘with the highest posterior’ TN (x | py,, ).

* Update the parameters (5, X, 7x) of each Gaussian.
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Likelihood in GMM
Gaussian mixture:

K
= Z TFkN(X | s Ek)
k=1
Log-likelihood:
n K
L= log lzﬂ'k-/\[(xi \ Mk;,Ek)}?
=1 k=1

where V' (x; | gy, Bg) = .. .exp (— 5(xi — py) TE3 (x5 — 1)

Set the derivative with respect to f,, to zero:

Z mN(Xz | g i) );{r(xi — mi) = 0.

=1 lﬂ-] (Xi |y’]72]
Zik
EBERHARD KARLS
Dmitry Kobak | Machine LearningI | Clustering and expectation-maximization UNIVERSITAT

TUBINGEN



Likelihood in GMM

Set the derivative with respect to f,, to zero:

Z ﬂ'kN(Xi | by, B) );{r(xi —py) = 0.

SR N (x| g, B

Zik

n
S zik(xi — ) = 0.
=1

Jy — > ZikXi
F > Zik '
This is a wezghted mean of all points.

Very similar derivation shows that 3, should be the weighted covariance

matrix, and 7 = > 2z /N
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Expectation-maximization (EM)

Expectation-maximization algorithm iteratively alternates between

updating gy, Xy, 71, and updating 2

* E-step: compute the posterior probability z;;, for each point to be in

each Gaussian component.

* M-step: update the parameters (5, 2, ) of each Gaussian using

weighted averages.

EM is a very generic algorithm to optimize likelihood in probabilistic
models with latent variables. (In GMMs, latent variables are true class
memberships.) E-step computes posterior over latent variables,
conditioned on the parameters of the model. M-step optimizes the

parameters, conditioned on the latent variables.
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Illustration of the EM
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Bishop, Pattern Recognition and Machine Learning
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Divergence in GMM
Gaussian mixture:

K
p(x) =Y mN(x | py, ).

k=1

The likelihood can diverge if pt;, = x; for some ¢ and 3, — 0.

r(n\

X

In practice: if one of the Gaussians starts ‘collapsing’ during EM towards a
degenerate solution, do something (e.g. randomly reset its mean and

covariance matrix).
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EM vs. gradient descent

* Both EM and gradient descent are iterative algorithms.
* Both can converge to a local minimum.
* EM does not need a learning rate.

* In EM, all parameters are automatically meaningful after each step
without imposing constraints (such as 73, summing to 1, or all 3,

being positive-definite).
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GMM vs. K-means

Similar to what we discussed about LDA, one can constrain X, in a

GMM to be shared between classes, or diagonal, or spherical.

A GMM with shared spherical covariance matrix 3, = 0?1 is very closely
related to K -means. The main difference is that K-means performs bard
cluster assignments in the ‘E-step’, whereas GMM performs sofz cluster

assignments. If 02 — 0, GMM converges to K -means.

Note: in practical implementations it can be convenient to initialize

GMM with a K -means solution.
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GMM vs. K-means

EBERHARD KARLS
Dmitry Kobak | Machine LearningI | Clustering and expectation-maximization U'[NLIJ\[gFNRé}IgQT



