
Supervised and unsupervised learning

Supervised learning: input data → output data.

Unsupervised learning: input data and nothing else.
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Clustering problem

This problem is very hard to formalize. What exactly is a cluster? How to
determine the number of clusters in the data? Are the data clustered at all?
How to compare two clustering algorithms?
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K-means clustering

K-means clustering aims to cluster the dataset {xi} into K clusters {Sk},
each represented by a vector µk, to minimize the following loss function:

L =
K∑

k=1

∑
i∈Sk

∥xi − µk∥2.

Alternatively, this can be written as

L =
K∑

k=1

n∑
i=1

rik∥xi − µk∥2,

where rik = 1 if xi ∈ Sk and 0 otherwise.
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K-means loss function
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Minimizing the K-means loss

L =
∑

k

∑
i∈Sk

∥xi − µk∥2 =
K∑

k=1

n∑
i=1

rik∥xi − µk∥2

Not analytically solvable. Not convex. Gradient descent can be messy.

Alternative approach (Lloyd’s algorithm): iteratively optimize over rik

and over µk.

• For fixed µk: assign each point xi to the nearest cluster center.

i ∈ Sk if k = arg min
j

∥xi − µj∥2.

• For fixed rik:
µk = 1

|Sk|
∑
i∈Sk

xi.
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Illustration of the Lloyd’s algorithm

Bishop, Pattern Recognition andMachine Learning
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Local minima

https://stats.stackexchange.com/questions/133656
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Drawbacks of K-means
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Gaussian mixture model (GMM)

Gaussian mixture:

p(x) =
K∑

k=1
πkN (x | µk, Σk).

Intuitively, we could use the same iterative approach as in the Lloyd’s
algorithm for K-means:

• Assign each point to the ‘nearest’ Gaussian component (cluster).
Here ‘nearest’ means ‘with the highest posterior’ πkN (x | µk, Σk).

• Update the parameters (µk, Σk, πk) of each Gaussian.
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Likelihood in GMM

Gaussian mixture:

p(x) =
K∑

k=1
πkN (x | µk, Σk).

Log-likelihood:

L =
n∑

i=1
log

[
K∑

k=1
πkN (xi | µk, Σk)

]
,

where N (xi | µk, Σk) = . . . exp
(

− 1
2(xi − µk)⊤Σ−1

k (xi − µk)
)
.

Set the derivative with respect to µk to zero:
n∑

i=1

πkN (xi | µk, Σk)∑K
j=1 πjN (xi | µj , Σj)︸ ︷︷ ︸

zik

�
��Σ−1
k (xi − µk) = 0.
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Likelihood in GMM

Set the derivative with respect to µk to zero:

n∑
i=1

πkN (xi | µk, Σk)∑K
j=1 πjN (xi | µj , Σj)︸ ︷︷ ︸

zik

�
��Σ−1
k (xi − µk) = 0.

n∑
i=1

zik(xi − µk) = 0.

µk =
∑

zikxi∑
zik

.

This is a weightedmean of all points.

Very similar derivation shows that Σk should be the weighted covariance
matrix, and πk =

∑
zik/n.

Dmitry Kobak | Machine Learning I | Clustering and expectation-maximization



Expectation-maximization (EM)

Expectation-maximization algorithm iteratively alternates between
updating µk, Σk, πk and updating zik:

• E-step: compute the posterior probability zik for each point to be in
each Gaussian component.

• M-step: update the parameters (µk, Σk, πk) of each Gaussian using
weighted averages.

EM is a very generic algorithm to optimize likelihood in probabilistic
models with latent variables. (In GMMs, latent variables are true class
memberships.) E-step computes posterior over latent variables,
conditioned on the parameters of the model. M-step optimizes the
parameters, conditioned on the latent variables.
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Illustration of the EM

Bishop, Pattern Recognition andMachine Learning
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Divergence in GMM

Gaussian mixture:

p(x) =
K∑

k=1
πkN (x | µk, Σk).

The likelihood can diverge if µk = xi for some i and Σk → 0.

In practice: if one of the Gaussians starts ‘collapsing’ during EM towards a
degenerate solution, do something (e.g. randomly reset its mean and
covariance matrix).

Dmitry Kobak | Machine Learning I | Clustering and expectation-maximization



EM vs. gradient descent

• Both EM and gradient descent are iterative algorithms.

• Both can converge to a local minimum.

• EM does not need a learning rate.

• In EM, all parameters are automatically meaningful after each step
without imposing constraints (such as πk summing to 1, or all Σk

being positive-definite).
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GMM vs. K-means

Similar to what we discussed about LDA, one can constrain Σk in a
GMM to be shared between classes, or diagonal, or spherical.

A GMMwith shared spherical covariance matrix Σk = σ2I is very closely
related to K-means. The main difference is that K-means performs hard
cluster assignments in the ‘E-step’, whereas GMM performs soft cluster
assignments. If σ2 → 0, GMM converges to K-means.

Note: in practical implementations it can be convenient to initialize
GMMwith a K-means solution.
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GMM vs. K-means
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