
Dimensionality reduction

What for?

• To obtain some insight into the data;

• As a preprocessing step.
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Principal component analysis (PCA)

Linear dimensionality reduction to 1 dimension: turns X into Xw.

It is enough to consider only unit vectors, ∥w∥ = 1.
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Principal component analysis (PCA)

How to choose w?

1. To minimize the reconstruction error.

2. To maximize the variance.

Surprising fact: these are equivalent and PCA does both!
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Maximizing variance ⇔ minimizing error

Assume all features are centered:
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Variance + Mean squared error = const
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PCA vs. regression
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PCA loss function

Minimizing reconstruction error:

L = ∥X − Xww⊤∥2.

Maximizing variance:

−L = 1
n

w⊤X⊤Xw = w⊤Cw, s.t. ∥w∥2 = 1.

Here C = 1
nX⊤X is the sample covariance matrix.
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Maximizing w⊤Cw

We can use Lagrange multiplier to solve this problem (see Lecture 4):

−L = w⊤Cw − λ(w⊤w − 1).

Setting ∂L/∂w = 0, we get:

Cw = λw

This means that w should be an eigenvector of C.

To maximize w⊤Cw = λ, choose the eigenvector with the largest
eigenvalue λ.
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Spectral theorem

C is a symmetric p × p matrix. One can prove that it has p eigenvectors
that are all orthogonal to each other.

If w⊤
1 w2 = 0 for eigenvectors w1 and w2, then w⊤

1 Cw2 = 0, i.e.
projections on two eigenvectors have correlation zero.

This implies that in the eigenvector basis, the covariance matrix becomes
diagonal:

Rotated data: XV.

Covariance:
1
nV⊤X⊤XV = V⊤CV = Λ.

Equivalently: C = VΛV⊤.
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Max. variance ⇔ min. error ⇔ diag. covariance

Subsequent eigenvectors correspond to the subsequent principal
components.
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Relationship to SVD

Consider singular value decomposition X = USV⊤. Then

C = 1
n

VSU⊤USV⊤ = VS2

n
V⊤ = VΛV⊤.

This is eigendecomposition!

Note: this only holds true if X is centered.
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Why PCA?

One can use PCA for two reasons:

• To explore the data;

• To preprocess the data.
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PCA for data exploration

A biplot from https://stats.stackexchange.com/questions/7860
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Total variance

Total variance:
∑

i λi =
∑

i Var[xi] where λi are eigenvalues and xi are
data features. This is called the trace of the covariance matrix:

tr(C) = tr(VΛV⊤) = tr(V⊤VΛ) = tr(Λ).

Explained variance by PC i is defined as λi/ tr(C).
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PCA on correlation or covariance

If features are on a different scale, it can make sense to standardize all of
them (making C the correlation matrix):

https://stats.stackexchange.com/questions/53
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The spectrum of the covariance matrix

The set of all the eigenvalues {λi} is called the spectrum:

How to choose the number of PCs? There are many rules of thumb: look
for an ‘elbow’; capture 90% of the total variance; etc.

Better criteria: cross-validation and shuffling the features.
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Shuffled spectrum

Shuffle every column of X independently:
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PCA for preprocessing

PCA for preprocessing: reduce X to a small number k of PCs XVk

where Vk is a p × k matrix of unit-norm eigenvectors with the largest
eigenvalues, then use XVk for downstream processing.

Advantages: all correlations are zero; no small singular values / eigenvalues
left; lower dimensionality; smaller size.

If you use all PCs, you simply rotate the data.
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Principal component regression (PCR)

PCA followed by regression is called principal component regression
(PCR). It is closely related to ridge regression.

Reminder (see Lecture 4):

Xβ̂OLS = X(X⊤X)−1X⊤y = UU⊤y

Xβ̂ridge = X(X⊤X + nλI)−1X⊤y = U diag
{ s2

i

s2
i + nλ

}
U⊤y

PCR does hard thresholding of singular values:

diag{1, 1, . . . , 1︸ ︷︷ ︸
k

, 0, 0, . . . 0}.

The number of PCs k can serve as a regularization parameter, similar to
the ridge penalty λ.
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Probabilistic PCA (PPCA)

A different perspective on PCA. Consider a latent variable model:

z ∼ N (0k, Ik)
x | z ∼ N (Wz + µ, σ2I)

The mean and the covariance of the marginal distribution are:

E[x] = µ,

Cov[x] = WW⊤ + σ2I.

Goal: given a dataset X, fit the model using maximum likelihood.

Solution: EM algorithm.
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EM for PPCA

EM algorithm:

• E-step: given W, µ, σ2, find posterior distribution over z (it is
Gaussian, so it is enough to computeE[z] and Cov[z]).

• M-step: given z, find W, µ, σ2 maximizing the likelihood.

It turns out that the maximum likelihood solution Ŵ is given by Vk

times a particular diagonal matrix. So PPCA is equivalent to PCA!
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Factor analysis (FA)

Factor analysis:

z ∼ N (0k, Ik)
x | z ∼ N (Wz + µ, Ψ)

where Ψ is a diagonal matrix.

FA has been extremely popular in some social sciences. It is a probabilistic
latent variable model slightly more general than PPCA.

FA does not have an analytic ML solution. But one can use EM to fit the
model.
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