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Dimensionality reduction

Dimensionality reduction algorithms can be:

• unsupervised / supervised (PCA / LDA)
• linear / non-linear (PCA / kernel PCA)
• parametric / non-parametric (PCA / MDS)

Today we are talking about unsupervised non-parametric methods (often called 
‘non-linear dimensionality reduction’).

Examples: MDS, t-SNE, UMAP, etc. 
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Where are these algorithms used?
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Where are these algorithms used?

Single-cell transcriptomics (single-cell RNA sequencing): samples are cells, features 
are genes.

Zeisel et al. (2018)
n ≈ 500,000
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Where are these algorithms used?

Population genomics: samples are people, features are single-nucleotide 
polymorphims. 

Diaz-Papkovich et al. (2019)
n ≈ 500,000
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Where are these algorithms used?

Behavioural physiology: samples are syllable renditions, features are 
spectrogram bins. 

Kollmorgen et al. (2020)
n ≈ 600,000
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Where are these algorithms used?

Digital humanities: samples are books, features are words. 

Schmidt (2018)
n ≈ 15,000,000
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MNIST dataset

n = 70,000
28×28 images = 784 pixels
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MNIST dataset: PCA
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MNIST dataset: MDS

Dmitry Kobak  |  Machine Learning I  | Manifold learning and t-SNE 

Multidimensional scaling: arrange points in 2D to approximate 
high-dimensional pairwise distances (1950s–1960s; Kruskal, Torgerson, etc.).
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MNIST dataset: MDS

Dmitry Kobak  |  Machine Learning I  | Manifold learning and t-SNE 

Multidimensional scaling: arrange points in 2D to approximate 
high-dimensional pairwise distances (1950s–1960s; Kruskal, Torgerson, etc.).

  Here n = 5,000.



Why does MDS fail?
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Preserving high-dimensional distances is usually a bad idea because it is not 
possible to preserve them (curse of dimensionality).
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MNIST dataset: t-SNE
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Stochastic neighbour embedding
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Loss function — Kullback-Leibler divergence between pairwise similarities 
(affinities) in the high-dimensional and in the low-dimensional spaces. 
Similarities are defined such that they sum to 1.
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Loss function — Kullback-Leibler divergence between pairwise similarities 
(affinities) in the high-dimensional and in the low-dimensional spaces. 
Similarities are defined such that they sum to 1.

High price for putting close 
neighbours far away.  
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High-dimensional similarities:

Kernel width is adaptively chosen to achieve the desired perplexity (default 30):

Then symmetrize and normalize to sum to one:

This defines all similarities as non-zero. But most will be ≈ 0, and can be set to 0 
without affecting the result. Moreover, one can use uniform similarities:



Stochastic neighbour embedding
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Low-dimensional similarities:



Stochastic neighbour embedding
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Low-dimensional similarities:

Similarity kernel in SNE:
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Low-dimensional similarities:

Similarity kernel in SNE:

Similarity kernel in t-SNE:



Gradient descent
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configuration of points).



Gradient descent

Dmitry Kobak  |  Machine Learning I  | Manifold learning and t-SNE 

The loss is optimized via gradient descent (e.g. starting from a random 
configuration of points).

This works as a many-body simulation: close neighbours attract each other 
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The loss is optimized via gradient descent (e.g. starting from a random 
configuration of points).

This works as a many-body simulation: close neighbours attract each other 
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Gradient descent: MNIST
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750 iterations.
Every 5th iteration shown.

Made with openTSNE.

Each frame is scaled (in reality 
embedding is initialized small 
and slowly grows in size).



Early exaggeration
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Multiply all 
attractive forces 
by 12 for 250 
iterations.

Note that the 
learning rate 
should be high 
enough for this 
to work:

η = n/12

(Belkina et al., 2019)



Fast approximate implementations

Dmitry Kobak  |  Machine Learning I  | Manifold learning and t-SNE 

Vanilla t-SNE has O(n2) attractive and repulsive forces. To speed it up, we 
need to deal with both.



Fast approximate implementations

Dmitry Kobak  |  Machine Learning I  | Manifold learning and t-SNE 

Vanilla t-SNE has O(n2) attractive and repulsive forces. To speed it up, we 
need to deal with both.

Attractive forces:

● Only use a small number of non-zero affinities, i.e. a sparse 
k-nearest-neighbour (kNN) graph. This reduces the number of forces.
(Standard heuristic: k = 3P. For P = 30, this gives k = 90.)
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Vanilla t-SNE has O(n2) attractive and repulsive forces. To speed it up, we 
need to deal with both.

Attractive forces:

● Only use a small number of non-zero affinities, i.e. a sparse 
k-nearest-neighbour (kNN) graph. This reduces the number of forces.
(Standard heuristic: k = 3P. For P = 30, this gives k = 90.)

● Use approximate kNN graphs. This speeds up graph construction.

Repulsive forces:

● Barnes-Hut t-SNE (BH t-SNE, 2013): O(n log(n))
● FFT-accelerated interpolation-based t-SNE (FIt-SNE, 2019): O(n)
● Noise contrastive estimation / negative sampling (NCVis, 2020): O(n)



Barnes-Hut approximation
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Perplexity and the number of neighbours
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Perplexity can be seen as the ‘effective’ number of neighbours that enter the 
loss function. Default perplexity is 30.
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Perplexity and the number of neighbours
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Perplexity can be seen as the ‘effective’ number of neighbours that enter the 
loss function. Default perplexity is 30.

Much smaller values are rarely useful.

Much larger values are impractical or even computationally prohibitive.



Uniform affinity
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Gaussian affinities with perplexity P can usually be replaced by the uniform 
affinities with k ≈ P/2.



Low-dimensional similarity kernel
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The main innovation of t-SNE compared to SNE was the Cauchy kernel, 
addressing the ‘crowding problem’ of SNE.

(Kobak et al., 2020)
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Low-dimensional similarity kernel
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The main innovation of t-SNE compared to SNE was the Cauchy kernel, 
addressing the ‘crowding problem’ of SNE.

Even heavier-tailed kernels can bring out even finer cluster structure.

(Kobak et al., 2020)



Low-dimensional similarity kernel
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HathiTrust library, Russian language (n ≈ 400,000):

(Kobak et al., 2020)



The role of initialization
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(Kobak and Linderman, 2021)
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The role of initialization
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t-SNE preserves local structure (neighbours) but often struggles to preserve 
global structure. The loss function has many local minima and initialization 
can play a large role.

Always use informative initialization, e.g. PCA. (Kobak and Linderman, 2021)



What happens with random initialization
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Note: strong exaggeration approximates Laplacian Eigenmaps. 
(Linderman and Steinerberger, 2019)



Global structure
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t-SNE preserves local structure (neighbours) but often struggles to preserve 
global structure: real-life example from single-cell transcriptomics.

(Tasic et al., 2018;
Kobak and Berens, 2019)



PCA initialization

Dmitry Kobak  |  Machine Learning I  | Manifold learning and t-SNE 



Attraction-repulsion spectrum
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happens if we keep the exaggeration on throughout the optimization?

(Böhm et al., 2020)
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Attraction-repulsion spectrum
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Early exaggeration multiplies attractive forces by 12 for 250 iterations. What 
happens if we keep the exaggeration on throughout the optimization?

Many other methods, e.g. UMAP,  produce embeddings that approximately 
fall on this spectrum. (Böhm et al., 2020)



Continuity-discreteness tradeoff
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Single-cell transcriptomic study of mouse embryogenesis (n ≈ 2,000,000). 
Left — original t-SNE. Right — high learning rate, PCA initialization.

(Cao et al., 2019; Kobak and Berens, 2019)
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Continuity-discreteness tradeoff
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Single-cell transcriptomic study of mouse embryogenesis (n ≈ 2,000,000). 
Left — with exaggeration. Right — without exaggeration.

(Cao et al., 2019; Kobak and Berens, 2019)
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Single-cell transcriptomic study of mouse embryogenesis (n ≈ 2,000,000).
Left — with exaggeration. Right — without exaggeration.

(Cao et al., 2019; Kobak and Berens, 2019)


