Data visualization with t-SNE
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Dimensionality reduction

Dimensionality reduction algorithms can be:

* unsupervised / supervised (PCA/LDA)
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Dimensionality reduction

Dimensionality reduction algorithms can be:

* unsupervised / supervised (PCA/LDA)
* linear / non-linear (PCA / kernel PCA)
* parametric / non-parametric  (PCA / MDS)

Today we are talking about unsupervised non-parametric methods (often called

‘non-linear dimensionality reduction’).

Examples: MDS, t-SNE, UMADP, etc.
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Where are these algorithms used?
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Where are these algorithms used?

Single-cell transcriptomics (single-cell RNA sequencing): samples are cells, features
are genes.
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Zeisel et al. (2018)
n = 500,000
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Where are these algorithms used?

Population genomics: samples are people, features are single-nucleotide

polymorphims.
Diaz-Papkovich et al. (2019)
n = 500,000
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Where are these algorithms used?

Behavioural physiology: samples are syllable renditions, features are
spectrogram bins.
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Where are these algorithms used?

Digital humanities: samples are books, features are words.
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MNIST dataset
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MNIST dataset: MDS

Multidimensional scalin ¢: arrange points in 2D to approximate

high-dimensional pairwise distances (1950s—1960s; Kruskal, Torgerson, etc.).
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MNIST dataset: MDS

Multidimensional scalin ¢: arrange points in 2D to approximate

high-dimensional pairwise distances (1950s—1960s; Kruskal, Torgerson, etc.).

L=> (dij—llyi —y;ll)?
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MDS

MNIST dataset

Multidimensional scaling: arrange points in 2D to approximate

Kruskal, Torgerson, etc.).

high-dimensional pairwise distances (1950s-1960s;

(dij — |lyi — y;l)°
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Why does MDS fail?

Preserving high—dimensional distances is usually a bad idea because it is not

possible to preserve them (curse of dimensionality).
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Why does MDS fail?

Pairwise distances between pointsin a standard Gaussian:
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Why does MDS fail?

Pairwise distances between pointsin a standard Gaussian:
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Why does MDS fail?

Pairwise distances between pointsin a standard Gaussian:
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Neighbour embeddings

Idea: preserve nearest nengboum instead of preserving distances.

poF] Stochastic neighbor embedding
G Hinton, ST Roweis - NIPS, 2002 - Citeseer

We describe a probabilistic approach to the task of placing objects, described by high-
dimensional vectors or by pairwise dissimilarities, in a low-dimensional space in a way that
preserves neighbor identities. A Gaussian is centered on each object in the high ...

v¢ 99 Cited by 1464 Related articles All 17 versions %
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Neighbour embeddings

Idea: preserve nearest nengboum instead of preserving distances.

poF] Stochastic neighbor embedding

G Hinton, ST Roweis - NIPS, 2002 - Citeseer

We describe a probabilistic approach to the task of placing objects, described by high-
dimensional vectors or by pairwise dissimilarities, in a low-dimensional space in a way that
preserves neighbor identities. A Gaussian is centered on each object in the high ...

v¢ 99 Cited by 1464 Related articles All 17 versions %

poF] Visualizing data using t-SNE.
L Van der Maaten, G Hinton - Journal of machine learning research, 2008 - jmir.org

We present a new technique called “"t-SNE" that visualizes high-dimensional data by giving
each datapoint a location in a two or three-dimensional map. The technique is a variation of
Stochastic Neighbor Embedding (Hinton and Roweis, 2002) that is much easier to optimize ...
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MNIST dataset: t-SNE
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Stochastic neighbour embedding

Loss function — Kullback-Leibler divergence between pairwise similarities
(affinities) in the high-dimensional and in the low-dimensional spaces.

Similarities are defined such that they sum to 1.

)
® [: = Zpij log —j
° — di;
o ) 1,7
°
. [
J
I °
[ ° °
° ° g
[ * )

EBERHARD KARLS

UNIVERSITAT
TUBINGEN




Stochastic neighbour embedding

Loss function — Kullback-Leibler divergence between pairwise similarities
(affinities) in the high-dimensional and in the low-dimensional spaces.

Similarities are defined such that they sum to 1.
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Stochastic neighbour embedding

High-dimensional similarities:

__exp(—|lxi — x;*/207)
2 ki €xp(—llxi — x[|?/207)

Pjli
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Stochastic neighbour embedding

High-dimensional similarities:

__exp(—|lxi — x;*/207)
2 ki €xp(—llxi — x[|?/207)

Pjli

Kernel width is adaptively chosen to achieve the desired perplexity (default 30):
P = 2H, where H = — ijéz' Pjli 10g2 Pj|i
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Stochastic neighbour embedding

High-dimensional similarities:

_exp(—xi — x]?/202)
> s xp(— i — xi[2/207)

Pjli

Kernel width is adaptively chosen to achieve the desired perplexity (default 30):
P — 2%, where H = — Zj;éz' pj|z- 10g2 pj|i

Then symmetrize and normalize to sum to one:
_ Pilg T Pjje
W on
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Stochastic neighbour embedding

High-dimensional similarities:

__exp(—lxi — x[]*/207)
D i XP(—I%i — xk[|?/207)

Pjli

Kernel width is adaptively chosen to achieve the desired perplexity (default 30):
P — 2H, where H = — quéi pj|7; 10g2 pj|z-

Then symmetrize and normalize to sum to one:
_ Pilg T Pjje
W on

This defines all similarities as non-zero. But most will be ~ 0, and can be set to 0

without affecting the result. Moreover, one can use uniform similarities:

pji = 1/k for k nearest neighbours

EBERHARD KARLS

UNIVERSITAT
TUBINGEN




Stochastic neighbour embedding

Low-dimensional similarities:

wij
G = 7 Wi = k(ly; —y;l), Z = zwkl
k+#l
EBERHARD KARLS. )
Dmitry Kobak | Machine Learning I | Manifold learning and t-SNE UNIVERSITAT

TUBINGEN



Stochastic neighbour embedding

Low-dimensional similarities:

'wij
g = wi =k(lyi —y;l)), 2= > wy
k#l
Similarity kernel in SNE:
k(d) = exp(—d?)
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Stochastic neighbour embedding

Low-dimensional similarities:

w. .
Qij = Zm , owy =k(ly; —y;l), Z2=) wa
k+#l
Similarity kernel in SNE:
k(d) = exp(—d?)
Similarity kernel in t-SNE:
k(d) =1/(1 +d?)
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Gradient descent

The loss is optimized via gradient descent (e.g. starting from a random

configuration of points).

L= —sz'j log g;j = me log
s _pr log w;; +10gzwwv
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Gradient descent

The loss is optimized via gradient descent (e.g. starting from a random

configuration of points).

L=— me log qij — szj log ?UU

= pr log w;; + logz W,

This works as a many-body simulation: close neighbours attract each other

while all points repulse each other.
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Gradient descent

The loss is optimized via gradient descent (e.g. starting from a random

configuration of points).

L=— szj log qij — sz] log ?Ulj

= pr log w;; + logzwzga

This works as a many-body simulation: close neighbours attract each other

while all points repulse each other.

L e 1 Ow;, 1 Ow;;
= -2 i + 2—
GYZ Zp ] Zj ayz Z Z 8y1

~ szjwz] YJ Z Zw
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Gradient descent: MNIST

750 iterations.
Every Sth iteration shown.

Made with open TSNE.

Each frame is scaled (in reality
embedding is initialized small

and slowly grows in size).
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Early exaggeration

Multiply all
attractive forces
by 12 for 250

iterations.

Note that the
leaming rate

should be high
enough for this

.
-

to work: 2

y=n/12

(Belkina et al., 2019)
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Fast approximate implementations

Vanilla t-SNE has O(»?) attractive and repulsive forces. To speed it up, we
need to deal with both.
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Fast approximate implementations

Vanilla t-SNE has O(7?) attractive and repulsive forces. To speed it up, we
need to deal with both.

Attractive forces:

® Only use a small number of non-zero affinities, i.e. a sparse
k-nearest-neighbour (kNN) graph. This reduces the number of forces.
(Standard heuristic: £ = 3P. For P = 30, this gives £ = 90.)
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(Standard heuristic: £ = 3P. For P = 30, this gives £ = 90.)
® Use approximate kNN graphs. This speeds up graph construction.
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Fast approximate implementations

Vanilla t-SNE has O(7?) attractive and repulsive forces. To speed it up, we
need to deal with both.

Attractive forces:

® Only use a small number of non-zero affinities, i.e. a sparse
k-nearest-neighbour (kNN) graph. This reduces the number of forces.

(Standard heuristic: £ = 3P. For P = 30, this gives £ = 90.)
® Use approximate kNN graphs. This speeds up graph construction.

Repulsive forces:

e Barnes-Hut t-SNE (BH t-SNE, 2013): O( log(n))
® FFT-accelerated interpolation-based t-SNE (FIt-SNE, 2019): O(#)
e Noise contrastive estimation / negative sampling (NCVis, 2020): O(7)
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Barnes-Hut approximation
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Barnes-Hut approximation

https://jheer.github.io/barnes-hut
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Barnes-Hut approximation
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Perplexity and the number of neighbours

Perplexity can be seen as the ‘effective’ number of neighbours that enter the

loss function. Default perplexity is 30.

Perplexity 30
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Perplexity and the number of neighbours

Perplexity can be seen as the ‘effective’ number of neighbours that enter the

loss function. Default perplexity is 30.

Perplexity 300 Perplexity 30 Perplexity 3
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Perplexity and the number of neighbours

Perplexity can be seen as the ‘effective’ number of neighbours that enter the

loss function. Default perplexity is 30.

Perplexity 300 Perplexity 30 Perplexity 3

Much smaller values are rarely useful.

Much larger values are impractical or even computationally prohibitive.
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Uniform afhnity

Gaussian affinities with perplexity P can usually be replaced by the uniform
affinities with &£ = P/2.

Perplexity 30 Uniform affinity kernel, k=15
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[Low-dimensional similarity kernel

The main innovation of t-SNE compared to SNE was the Cauchy kernel,
addressing the ‘crowding problem’ of SNE.

Cauchy kernel

(Kobak et al., 2020)
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[Low-dimensional similarity kernel

The main innovation of t-SNE compared to SNE was the Cauchy kernel,
addressing the ‘crowding problem’ of SNE.

Gaussian kernel Cauchy kernel

(Kobak et al., 2020)
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[Low-dimensional similarity kernel

The main innovation of t-SNE compared to SNE was the Cauchy kernel,

addressing the ‘crowding problem’ of SNE.

Gaussian kernel Cauchy kernel Heavier-tailed kernel

TR
. B 7
£ : 4

Even heavier-tailed kernels can bring out even finer cluster structure.

(Kobak et al., 2020)
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Low-dimensional similarity kernel

HathiTrust library, Russian language (7 = 400,000):

A a=1 B a=0.5
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(Kobak et al., 2020)
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The role of initialization

t-SNE preserves local structure (neighbours) but often struggles to preserve
global structure. The loss function has many local minima and initialization

can play a large role.

(Kobak and Linderman, 2021)
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The role of initialization

t-SNE preserves local structure (neighbours) but often struggles to preserve
global structure. The loss function has many local minima and initialization

can play a large role.

Data t-SNE, random init t-SNE, PCA init

2

(Kobak and Linderman, 2021)
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The role of initialization

t-SNE preserves local structure (neighbours) but often struggles to preserve
global structure. The loss function has many local minima and initialization

can play a large role.

Data t-SNE, random init t-SNE, PCA init
\ \/(\5%
N\ \

Always use informative initialization, e.g. PCA. (Kobak and Linderman, 2021)

T@
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What happens with random initialization

Note: strong exaggeration approximates Laplacian Eigenmaps.
(Linderman and Steinerberger, 2019)
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Global structure

t-SNE preserves local structure (neighbours) but often struggles to preserve

global structure: real-life example from single-cell transcriptomics.

t-SNE (random initialization) PCA

(Tasic etal., 2018;
Kobak and Berens, 2019)
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PCA initialization
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Attraction—repulsion spectrum

Early exaggeration multiplies attractive forces by 12 for 250 iterations. What

happens if we keep the exaggeration on throughout the optimization?

(Bohm et al., 2020)
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Attraction—repulsion spectrum

Early exaggeration multiplies attractive forces by 12 for 250 iterations. What

happens if we keep the exaggeration on throughout the optimization?

Exaggeration 50 Exaggeration 4 No exaggeration

(Bohm et al., 2020)
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Attraction—repulsion spectrum

Early exaggeration multiplies attractive forces by 12 for 250 iterations. What

happens if we keep the exaggeration on throughout the optimization?

Exaggeration 50 Exaggeration 4 No exaggeration

Many other methods, e.g. UMAP, produce embeddings that approximately

fall on this spectrum. (Bshm et al., 2020)
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Continuity—discreteness tradeoff

Single-cell transcriptomic study of mouse embryogenesis (7 = 2,000,000).
Left — original t-SNE. Right — high learning rate, PCA initialization.

(Caoetal.,, 2019; Kobak and Berens, 2019)
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Continuity—discreteness tradeoff

Single-cell transcriptomic study of mouse embryogenesis (7 = 2,000,000).

Left — original t-SNE. Right — high learning rate, PCA initialization.

(Caoetal.,, 2019; Kobak and Berens, 2019)
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Continuity—discreteness tradeoff

Single-cell transcriptomic study of mouse embryogenesis (7 = 2,000,000).
Left — with exaggeration. Right — without exaggeration.

Hepatocyte
HAEMATOPO]ESIS

Endothellal ”

Epithelial

MESENCHYMAL

(Caoetal.,, 2019; Kobak and Berens, 2019)
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Continuity—discreteness tradeoff

Single-cell transcriptomic study of mouse embryogenesis (7 = 2,000,000).
Left — with exaggeration. Right — without exaggeration.
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